A Project-Based Guide to Undergraduate Research in Mathematics

A Project-Based Guide to Undergraduate Research in Mathematics
Title A Project-Based Guide to Undergraduate Research in Mathematics PDF eBook
Author Pamela E. Harris
Publisher Springer Nature
Pages 334
Release 2020-04-17
Genre Mathematics
ISBN 3030378535

Download A Project-Based Guide to Undergraduate Research in Mathematics Book in PDF, Epub and Kindle

This volume provides accessible and self-contained research problems designed for undergraduate student projects, and simultaneously promotes the development of sustainable undergraduate research programs. The chapters in this work span a variety of topical areas of pure and applied mathematics and mathematics education. Each chapter gives a self-contained introduction on a research topic with an emphasis on the specific tools and knowledge needed to create and maintain fruitful research programs for undergraduates. Some of the topics discussed include:• Disease modeling• Tropical curves and surfaces• Numerical semigroups• Mathematics EducationThis volume will primarily appeal to undergraduate students interested in pursuing research projects and faculty members seeking to mentor them. It may also aid students and faculty participating in independent studies and capstone projects.

A Mathematician’s Practical Guide to Mentoring Undergraduate Research

A Mathematician’s Practical Guide to Mentoring Undergraduate Research
Title A Mathematician’s Practical Guide to Mentoring Undergraduate Research PDF eBook
Author Michael Dorff
Publisher American Mathematical Soc.
Pages 232
Release 2019-09-16
Genre Education
ISBN 147044934X

Download A Mathematician’s Practical Guide to Mentoring Undergraduate Research Book in PDF, Epub and Kindle

A Mathematician's Practical Guide to Mentoring Undergraduate Research is a complete how-to manual on starting an undergraduate research program. Readers will find advice on setting appropriate problems, directing student progress, managing group dynamics, obtaining external funding, publishing student results, and a myriad of other relevant issues. The authors have decades of experience and have accumulated knowledge that other mathematicians will find extremely useful.

Directions For Mathematics Research Experience For Undergraduates

Directions For Mathematics Research Experience For Undergraduates
Title Directions For Mathematics Research Experience For Undergraduates PDF eBook
Author Yanir A Rubinstein
Publisher World Scientific
Pages 253
Release 2015-09-29
Genre Education
ISBN 9814630330

Download Directions For Mathematics Research Experience For Undergraduates Book in PDF, Epub and Kindle

'The collection transcends the traditional institutional division lines (private, public, large, small, research, undergraduate, etc.) and has something to offer for readers in every realm of academia. The collection challenges the reader to think about how to implement and improve undergraduate research experiences, what such experiences mean to students and faculty, and how such experiences can take a permanent place in the modern preparation of undergraduate mathematics and STEM majors. The book is an open invitation to learn about what has worked and what hasn’t in the inspiration, and has the potential to ignite initiatives with long-lasting benefits to students and faculty nationwide.' See Full ReviewNotices of the AMS“The US National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program in mathematics is now 25 years old, and it is a good time to think about what it has achieved, how it has changed, and where this idea will go next.”This was the premise of the conference held at Mt. Holyoke College during 21-22 June, 2013, and this circle of ideas is brought forward in this volume. The conference brought together diverse points of view, from NSF administrators, leaders of university-wide honors programs, to faculty who had led REUs, recent PhDs who are expected to lead them soon, and students currently in an REU themselves. The conversation was so varied that it justifies a book-length attempt to capture all that was suggested, reported, and said. Among the contributors are Ravi Vakil (Stanford), Haynes Miller (MIT), and Carlos Castillo-Chavez (Arizona, President's Obama Committee on the National Medal of Science 2010-2012).This book should serve not only as a collection of speakers' notes, but also as a source book for anyone interested in teaching mathematics and in the possibility of incorporating research-like experiences in mathematics classes at any level, as well as designing research experiences for undergraduates outside of the classroom.

Proceedings of the Conference on Promoting Undergraduate Research in Mathematics

Proceedings of the Conference on Promoting Undergraduate Research in Mathematics
Title Proceedings of the Conference on Promoting Undergraduate Research in Mathematics PDF eBook
Author Joseph A. Gallian
Publisher
Pages 455
Release 2007
Genre Mathematics
ISBN 9780821843215

Download Proceedings of the Conference on Promoting Undergraduate Research in Mathematics Book in PDF, Epub and Kindle

Descriptions of summer research programs: The AIM REU: Individual projects with a common theme by D. W. Farmer The Applied Mathematical Sciences Summer Institute by E. T. Camacho and S. A. Wirkus Promoting research and minority participantion via undergraduate research in the mathematical sciences. MTBI/SUMS-Arizona State University by C. Castillo-Chavez, C. Castillo-Garsow, G. Chowell, D. Murillo, and M. Pshaenich Summer mathematics research experience for undergraduates (REU) at Brigham Young University by M. Dorff Introducing undergraduates for underrepresented minorities to mathematical research: The CSU Channel Islands/California Lutheran University REU, 2004-2006 by C. Wyels The REUT and NREUP programs at California State University, Chico by C. M. Gallagher and T. W. Mattman Undergraduate research at Canisius. Geometry and physics on graphs, summer 2006 by S. Prassidis The NSF REU at Central Michigan University by S. Narayan and K. Smith Claremont Colleges REU, 2005-07 by J. Hoste The first summer undergraduate research program at Clayton State University by A. Lanz Clemson REU in computational number theory and combinatorics by N. Calkin and K. James Research with pre-mathematicians by C. R. Johnson Traditional roots, new beginnings: Transitions in undergraduate research in mathematics at ETSU by A. P. Godbole Undergraduate research in mathematics at Grand Valley State University by S. Schlicker The Hope College REU program by T. Pennings The REU experience at Iowa State University by L. Hogben Lafayette College's REU by G. Gordon LSU REU: Graphs, knots, & Dessins in topology, number theory & geometry by N. W. Stoltzfus, R. V. Perlis, and J. W. Hoffman Mount Holyoke College mathematics summer research institute by M. M. Robinson The director's summer program at the NSA by T. White REU in mathematical biology at Penn State Erie, The Behrend College by J. P. Previte, M. A. Rutter, and S. A. Stevens The Rice University Summer Institute of Statistics (RUSIS) by J. Rojo The Rose-Hulman REU in mathematics by K. Bryan The REU program at DIMACS/Rutgers University by B. J. Latka and F. S. Roberts The SUNY Potsdam-Clarkson University REU program by J. Foisy The Trinity University research experiences for undergraduates in mathematics program by S. Chapman Undergraduate research in mathematics at the University of Akron by J. D. Adler The Duluth undergraduate research program 1977-2006 by J. A. Gallian Promoting undergraduate research in mathematics at the University of Nebraska-Lincoln by J. L. Walker, W. Ledder, R. Rebarber, and G. Woodward REU site: Algorithmic combinatorics on words by F. Blanchet-Sadri Promoting undergraduate research by T. Aktosun Research experiences for undergraduates inverse problems for electrical networks by J. A. Morrow Valparaiso experiences in research for undergraduates in mathematics by R. Gillman and Z. Szaniszlo Wabash Summer Institute in Algebra (WSIA) by M. Axtell, J. D. Phillips, and W. Turner THe SMALL program at Williams College by C. E. Silva and F. Morgan Industrial mathematics and statistics research for undergraduates at WPI by A. C. Heinricher and S. L. Weekes Descriptions of summer enrichment programs: Twelve years of summer program for women in mathematics-What works and why? by M. M. Gupta Research experience for undergraduates in numerical analysis and scientific computing: An international program by G. Fairweather and B. M. Moskal Articles: The Long-Term Undergraduate Research (LURE) model by S. S. Adams, J. A. Davis, N. Eugene, K. Hoke, S. Narayan, and K. Smith Research with students from underrepresented groups by R. Ashley, A. Ayela-Uwangue, F. Cabrera, C. Callesano, and D. A. Narayan Research classes at Gettysburg College by B. Bajnok Research in industrial projects for students: A unique undergraduate experience by S. Beggs What students say about their REU experience by F. Connolly and J. A. Gallian Diversity issues in undergraduate research by R. Cortez, D. Davenport, H

The Best Writing on Mathematics 2021

The Best Writing on Mathematics 2021
Title The Best Writing on Mathematics 2021 PDF eBook
Author Mircea Pitici
Publisher Princeton University Press
Pages 303
Release 2022-07-19
Genre Mathematics
ISBN 0691225702

Download The Best Writing on Mathematics 2021 Book in PDF, Epub and Kindle

The year’s finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world—and you don’t need to be a mathematician to enjoy the pieces collected here. These essays—from leading names and fresh new voices—delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice, and taking readers behind the scenes of today’s hottest mathematical debates. Here, Viktor Blåsjö gives a brief history of “lockdown mathematics”; Yelda Nasifoglu decodes the politics of a seventeenth-century play in which the characters are geometric shapes; and Andrew Lewis-Pye explains the basic algorithmic rules and computational procedures behind cryptocurrencies. In other essays, Terence Tao candidly recalls the adventures and misadventures of growing up to become a leading mathematician; Natalie Wolchover shows how old math gives new clues about whether time really flows; and David Hand discusses the problem of “dark data”—information that is missing or ignored. And there is much, much more.

Solved and Unsolved Problems in Number Theory

Solved and Unsolved Problems in Number Theory
Title Solved and Unsolved Problems in Number Theory PDF eBook
Author Daniel Shanks
Publisher American Mathematical Society
Pages 321
Release 2024-01-24
Genre Mathematics
ISBN 1470476452

Download Solved and Unsolved Problems in Number Theory Book in PDF, Epub and Kindle

The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.

Squigonometry: The Study of Imperfect Circles

Squigonometry: The Study of Imperfect Circles
Title Squigonometry: The Study of Imperfect Circles PDF eBook
Author Robert D. Poodiack
Publisher Springer Nature
Pages 292
Release 2022-12-15
Genre Mathematics
ISBN 3031137833

Download Squigonometry: The Study of Imperfect Circles Book in PDF, Epub and Kindle

This textbook introduces generalized trigonometric functions through the exploration of imperfect circles: curves defined by |x|p + |y|p = 1 where p ≥ 1. Grounded in visualization and computations, this accessible, modern perspective encompasses new and old results, casting a fresh light on duality, special functions, geometric curves, and differential equations. Projects and opportunities for research abound, as we explore how similar (or different) the trigonometric and squigonometric worlds might be. Comprised of many short chapters, the book begins with core definitions and techniques. Successive chapters cover inverse squigonometric functions, the many possible re-interpretations of π, two deeper dives into parameterizing the squigonometric functions, and integration. Applications include a celebration of Piet Hein’s work in design. From here, more technical pathways offer further exploration. Topics include infinite series; hyperbolic, exponential, and logarithmic functions; metrics and norms; and lemniscatic and elliptic functions. Illuminating illustrations accompany the text throughout, along with historical anecdotes, engaging exercises, and wry humor. Squigonometry: The Study of Imperfect Circles invites readers to extend familiar notions from trigonometry into a new setting. Ideal for an undergraduate reading course in mathematics or a senior capstone, this book offers scaffolding for active discovery. Knowledge of the trigonometric functions, single-variable calculus, and initial-value problems is assumed, while familiarity with multivariable calculus and linear algebra will allow additional insights into certain later material.