A Primer on the Calculus of Variations and Optimal Control Theory

A Primer on the Calculus of Variations and Optimal Control Theory
Title A Primer on the Calculus of Variations and Optimal Control Theory PDF eBook
Author Mike Mesterton-Gibbons
Publisher American Mathematical Soc.
Pages 274
Release 2009
Genre Mathematics
ISBN 0821847724

Download A Primer on the Calculus of Variations and Optimal Control Theory Book in PDF, Epub and Kindle

The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Title Calculus of Variations and Optimal Control Theory PDF eBook
Author Daniel Liberzon
Publisher Princeton University Press
Pages 255
Release 2012
Genre Mathematics
ISBN 0691151873

Download Calculus of Variations and Optimal Control Theory Book in PDF, Epub and Kindle

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Calculus of Variations

Calculus of Variations
Title Calculus of Variations PDF eBook
Author Charles R. MacCluer
Publisher Courier Corporation
Pages 274
Release 2013-05-20
Genre Mathematics
ISBN 0486278301

Download Calculus of Variations Book in PDF, Epub and Kindle

First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.

Primer on Optimal Control Theory

Primer on Optimal Control Theory
Title Primer on Optimal Control Theory PDF eBook
Author Jason L. Speyer
Publisher SIAM
Pages 316
Release 2010-05-13
Genre Mathematics
ISBN 0898716942

Download Primer on Optimal Control Theory Book in PDF, Epub and Kindle

A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.

Variational Calculus and Optimal Control

Variational Calculus and Optimal Control
Title Variational Calculus and Optimal Control PDF eBook
Author John L. Troutman
Publisher Springer Science & Business Media
Pages 471
Release 2012-12-06
Genre Mathematics
ISBN 1461207371

Download Variational Calculus and Optimal Control Book in PDF, Epub and Kindle

An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.

Dynamic Optimization, Second Edition

Dynamic Optimization, Second Edition
Title Dynamic Optimization, Second Edition PDF eBook
Author Morton I. Kamien
Publisher Courier Corporation
Pages 402
Release 2013-04-17
Genre Mathematics
ISBN 0486310280

Download Dynamic Optimization, Second Edition Book in PDF, Epub and Kindle

Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Calculus of Variations

Calculus of Variations
Title Calculus of Variations PDF eBook
Author Filip Rindler
Publisher Springer
Pages 446
Release 2018-06-20
Genre Mathematics
ISBN 3319776371

Download Calculus of Variations Book in PDF, Epub and Kindle

This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.