A Natural Introduction to Probability Theory
Title | A Natural Introduction to Probability Theory PDF eBook |
Author | R. Meester |
Publisher | Springer Science & Business Media |
Pages | 201 |
Release | 2008-03-16 |
Genre | Mathematics |
ISBN | 3764387246 |
Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.
A Natural Introduction to Probability Theory
Title | A Natural Introduction to Probability Theory PDF eBook |
Author | Ronald Meester |
Publisher | Birkhäuser |
Pages | 196 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3034877862 |
Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.
Introduction to Probability
Title | Introduction to Probability PDF eBook |
Author | David F. Anderson |
Publisher | Cambridge University Press |
Pages | 447 |
Release | 2017-11-02 |
Genre | Mathematics |
ISBN | 110824498X |
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Probability Theory
Title | Probability Theory PDF eBook |
Author | Yakov G. Sinai |
Publisher | Springer Science & Business Media |
Pages | 148 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 366202845X |
Sinai's book leads the student through the standard material for ProbabilityTheory, with stops along the way for interesting topics such as statistical mechanics, not usually included in a book for beginners. The first part of the book covers discrete random variables, using the same approach, basedon Kolmogorov's axioms for probability, used later for the general case. The text is divided into sixteen lectures, each covering a major topic. The introductory notions and classical results are included, of course: random variables, the central limit theorem, the law of large numbers, conditional probability, random walks, etc. Sinai's style is accessible and clear, with interesting examples to accompany new ideas. Besides statistical mechanics, other interesting, less common topics found in the book are: percolation, the concept of stability in the central limit theorem and the study of probability of large deviations. Little more than a standard undergraduate course in analysis is assumed of the reader. Notions from measure theory and Lebesgue integration are introduced in the second half of the text. The book is suitable for second or third year students in mathematics, physics or other natural sciences. It could also be usedby more advanced readers who want to learn the mathematics of probability theory and some of its applications in statistical physics.
Introduction to Probability with R
Title | Introduction to Probability with R PDF eBook |
Author | Kenneth Baclawski |
Publisher | CRC Press |
Pages | 384 |
Release | 2008-01-24 |
Genre | Mathematics |
ISBN | 9781420065220 |
Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.
Introduction to Probability
Title | Introduction to Probability PDF eBook |
Author | Dimitri Bertsekas |
Publisher | Athena Scientific |
Pages | 544 |
Release | 2008-07-01 |
Genre | Mathematics |
ISBN | 188652923X |
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
A Modern Introduction to Probability and Statistics
Title | A Modern Introduction to Probability and Statistics PDF eBook |
Author | F.M. Dekking |
Publisher | Springer Science & Business Media |
Pages | 485 |
Release | 2006-03-30 |
Genre | Mathematics |
ISBN | 1846281687 |
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books