Switching in Systems and Control
Title | Switching in Systems and Control PDF eBook |
Author | Daniel Liberzon |
Publisher | Springer Science & Business Media |
Pages | 232 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461200172 |
The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.
Robust Adaptive Control
Title | Robust Adaptive Control PDF eBook |
Author | Petros Ioannou |
Publisher | Courier Corporation |
Pages | 850 |
Release | 2013-09-26 |
Genre | Technology & Engineering |
ISBN | 0486320723 |
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Adaptive Control
Title | Adaptive Control PDF eBook |
Author | Yoan D. Landau |
Publisher | CRC Press |
Pages | 432 |
Release | 1979-06-01 |
Genre | Technology & Engineering |
ISBN | 9780824765484 |
Control Strategy for Time-Delay Systems
Title | Control Strategy for Time-Delay Systems PDF eBook |
Author | Mohammad-Hassan Khooban |
Publisher | Academic Press |
Pages | 438 |
Release | 2020-11-21 |
Genre | Technology & Engineering |
ISBN | 0128206144 |
Control Strategy for Time-Delay Systems Part I: Concepts and Theories covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists, especially given that delays are present in 99% of industrial processes. The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modeling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described. For this purpose, highly complex models are introduced to ?describe the mentioned new applications, which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners, and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning practical system issues, such as standardization, protection, and design. - Presents an overview of the most recent trends for time-delay systems - Covers the important features of the real-world practical applications that can be valuable to practicing engineers and specialists - Provides analysis and simulations results of the techniques described in the book
Model-Reference Adaptive Control
Title | Model-Reference Adaptive Control PDF eBook |
Author | Nhan T. Nguyen |
Publisher | Springer |
Pages | 453 |
Release | 2018-03-01 |
Genre | Technology & Engineering |
ISBN | 3319563939 |
This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.
Adaptive Control Tutorial
Title | Adaptive Control Tutorial PDF eBook |
Author | Petros Ioannou |
Publisher | SIAM |
Pages | 401 |
Release | 2006-01-01 |
Genre | Mathematics |
ISBN | 0898716152 |
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Engineering Optimization
Title | Engineering Optimization PDF eBook |
Author | Xin-She Yang |
Publisher | John Wiley & Sons |
Pages | 377 |
Release | 2010-07-20 |
Genre | Mathematics |
ISBN | 0470640413 |
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.