A Matrix Handbook for Statisticians

A Matrix Handbook for Statisticians
Title A Matrix Handbook for Statisticians PDF eBook
Author George A. F. Seber
Publisher John Wiley & Sons
Pages 592
Release 2008-01-28
Genre Mathematics
ISBN 0470226781

Download A Matrix Handbook for Statisticians Book in PDF, Epub and Kindle

A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numerous references to both the theory behind the methods and the applications of the methods. A uniform approach is applied to each chapter, which contains four parts: a definition followed by a list of results; a short list of references to related topics in the book; one or more references to proofs; and references to applications. The use of extensive cross-referencing to topics within the book and external referencing to proofs allows for definitions to be located easily as well as interrelationships among subject areas to be recognized. A Matrix Handbook for Statisticians addresses the need for matrix theory topics to be presented together in one book and features a collection of topics not found elsewhere under one cover. These topics include: Complex matrices A wide range of special matrices and their properties Special products and operators, such as the Kronecker product Partitioned and patterned matrices Matrix analysis and approximation Matrix optimization Majorization Random vectors and matrices Inequalities, such as probabilistic inequalities Additional topics, such as rank, eigenvalues, determinants, norms, generalized inverses, linear and quadratic equations, differentiation, and Jacobians, are also included. The book assumes a fundamental knowledge of vectors and matrices, maintains a reasonable level of abstraction when appropriate, and provides a comprehensive compendium of linear algebra results with use or potential use in statistics. A Matrix Handbook for Statisticians is an essential, one-of-a-kind book for graduate-level courses in advanced statistical studies including linear and nonlinear models, multivariate analysis, and statistical computing. It also serves as an excellent self-study guide for statistical researchers.

Matrices for Statistics

Matrices for Statistics
Title Matrices for Statistics PDF eBook
Author M. J. R. Healy
Publisher Oxford University Press
Pages 164
Release 2000
Genre Mathematics
ISBN 9780198507024

Download Matrices for Statistics Book in PDF, Epub and Kindle

This textbook provides a concise introduction to the basis of matrix theory. The text of the first edition has been re-written and revised to take account of recent developments in statistical practice. The more difficult topics have been expanded and the mathematical explanations have been simplified. A new chapter has been included, at readers' request, to cover such topics as vectorising, matrix calculus and complex numbers.

Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics
Title Linear Algebra and Matrix Analysis for Statistics PDF eBook
Author Sudipto Banerjee
Publisher CRC Press
Pages 586
Release 2014-06-06
Genre Mathematics
ISBN 1420095382

Download Linear Algebra and Matrix Analysis for Statistics Book in PDF, Epub and Kindle

Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Basics of Matrix Algebra for Statistics with R

Basics of Matrix Algebra for Statistics with R
Title Basics of Matrix Algebra for Statistics with R PDF eBook
Author Nick Fieller
Publisher CRC Press
Pages 208
Release 2018-09-03
Genre Mathematics
ISBN 1315360055

Download Basics of Matrix Algebra for Statistics with R Book in PDF, Epub and Kindle

A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

Matrix Algebra

Matrix Algebra
Title Matrix Algebra PDF eBook
Author James E. Gentle
Publisher Springer Science & Business Media
Pages 536
Release 2007-07-27
Genre Computers
ISBN 0387708723

Download Matrix Algebra Book in PDF, Epub and Kindle

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Handbook of Matrices

Handbook of Matrices
Title Handbook of Matrices PDF eBook
Author Helmut L?tkepohl
Publisher
Pages 328
Release 1996-11-05
Genre Mathematics
ISBN

Download Handbook of Matrices Book in PDF, Epub and Kindle

Matrices are used in many areas including statistics, natural sciences, econometrics, maths & engineering. This book provides a collection of results for easy reference in one source, along with a comprehensive dictionary of matrices & related terms.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians
Title Numerical Analysis for Statisticians PDF eBook
Author Kenneth Lange
Publisher Springer Science & Business Media
Pages 606
Release 2010-05-17
Genre Business & Economics
ISBN 1441959459

Download Numerical Analysis for Statisticians Book in PDF, Epub and Kindle

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.