A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing
Title A Mathematical Introduction to Compressive Sensing PDF eBook
Author Simon Foucart
Publisher Springer Science & Business Media
Pages 634
Release 2013-08-13
Genre Computers
ISBN 0817649484

Download A Mathematical Introduction to Compressive Sensing Book in PDF, Epub and Kindle

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging
Title Handbook of Mathematical Methods in Imaging PDF eBook
Author Otmar Scherzer
Publisher Springer Science & Business Media
Pages 1626
Release 2010-11-23
Genre Mathematics
ISBN 0387929193

Download Handbook of Mathematical Methods in Imaging Book in PDF, Epub and Kindle

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

An Introduction to Compressed Sensing

An Introduction to Compressed Sensing
Title An Introduction to Compressed Sensing PDF eBook
Author M. Vidyasagar
Publisher SIAM
Pages 354
Release 2019-12-03
Genre Technology & Engineering
ISBN 161197612X

Download An Introduction to Compressed Sensing Book in PDF, Epub and Kindle

Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Title Data-Driven Science and Engineering PDF eBook
Author Steven L. Brunton
Publisher Cambridge University Press
Pages 615
Release 2022-05-05
Genre Computers
ISBN 1009098489

Download Data-Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Compressive Imaging: Structure, Sampling, Learning

Compressive Imaging: Structure, Sampling, Learning
Title Compressive Imaging: Structure, Sampling, Learning PDF eBook
Author Ben Adcock
Publisher Cambridge University Press
Pages 300
Release 2021-08-31
Genre Computers
ISBN 9781108421614

Download Compressive Imaging: Structure, Sampling, Learning Book in PDF, Epub and Kindle

Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging - including compressed sensing, wavelets and optimization - in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

Sparse Representations and Compressive Sensing for Imaging and Vision

Sparse Representations and Compressive Sensing for Imaging and Vision
Title Sparse Representations and Compressive Sensing for Imaging and Vision PDF eBook
Author Vishal M. Patel
Publisher Springer Science & Business Media
Pages 111
Release 2013-02-11
Genre Technology & Engineering
ISBN 1461463815

Download Sparse Representations and Compressive Sensing for Imaging and Vision Book in PDF, Epub and Kindle

Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal. These measurements are usually much smaller than the number of samples that define the signal. From these small numbers of measurements, the signal is then reconstructed by non-linear procedure. Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways. In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.

Mathematical Pictures at a Data Science Exhibition

Mathematical Pictures at a Data Science Exhibition
Title Mathematical Pictures at a Data Science Exhibition PDF eBook
Author Simon Foucart
Publisher Cambridge University Press
Pages 339
Release 2022-04-28
Genre Computers
ISBN 1316518884

Download Mathematical Pictures at a Data Science Exhibition Book in PDF, Epub and Kindle

A diverse selection of data science topics explored through a mathematical lens.