A Mathematical Approach to Research Problems of Science and Technology
Title | A Mathematical Approach to Research Problems of Science and Technology PDF eBook |
Author | Ryuei Nishii |
Publisher | Springer |
Pages | 497 |
Release | 2014-07-14 |
Genre | Technology & Engineering |
ISBN | 4431550607 |
This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.
Mathematical Modeling and Computation of Real-Time Problems
Title | Mathematical Modeling and Computation of Real-Time Problems PDF eBook |
Author | Rakhee Kulshrestha |
Publisher | CRC Press |
Pages | 172 |
Release | 2021-01-04 |
Genre | Mathematics |
ISBN | 1000288676 |
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems. The book covers a broad scope in the areas of statistical science, probability, stochastic processes, fluid dynamics, supply chain, optimization, and applications. It discusses advanced topics and the latest research findings, uses an interdisciplinary approach for real-time systems, offers a platform for integrated research, and identifies the gaps in the field for further research. The book is for researchers, students, and teachers that share a goal of learning advanced topics and the latest research in mathematical modeling.
Science and Mathematics Education for 21st Century Citizens
Title | Science and Mathematics Education for 21st Century Citizens PDF eBook |
Author | Laurinda Leite |
Publisher | Nova Science Publishers |
Pages | 435 |
Release | 2020 |
Genre | Education |
ISBN | 9781536184853 |
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--
Mathematical Models of Physics Problems
Title | Mathematical Models of Physics Problems PDF eBook |
Author | Luis Alfredo Anchordoqui |
Publisher | Nova Science Publishers |
Pages | 0 |
Release | 2013 |
Genre | Science |
ISBN | 9781626186002 |
This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two core subjects: complex analysis and classical techniques for the solution of ordinary and partial differential equations. These topics are complemented with occasional terse reviews of other material, including linear algebra, to the extent required to ensure the book can be followed from end-to-end. This textbook is designed to provide a framework for a roughly 12 week course, with 3 weeks devoted to complex variables, a 1 week refresher on linear algebra, followed by 5 and 3 weeks devoted to ordinary and partial differential equations, respectively. This schedule leaves time for a couple of exams. The narrative is complemented with ample problem sets, including detailed guides to solving the problems.
Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems
Title | Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF eBook |
Author | Chakraverty, S. |
Publisher | IGI Global |
Pages | 442 |
Release | 2014-01-31 |
Genre | Mathematics |
ISBN | 1466649925 |
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--Provided by publisher.
Technology and Mathematics
Title | Technology and Mathematics PDF eBook |
Author | Sven Ove Hansson |
Publisher | Springer |
Pages | 373 |
Release | 2018-10-24 |
Genre | Philosophy |
ISBN | 3319937790 |
This volume is the first extensive study of the historical and philosophical connections between technology and mathematics. Coverage includes the use of mathematics in ancient as well as modern technology, devices and machines for computation, cryptology, mathematics in technological education, the epistemology of computer-mediated proofs, and the relationship between technological and mathematical computability. The book also examines the work of such historical figures as Gottfried Wilhelm Leibniz, Charles Babbage, Ada Lovelace, and Alan Turing.
Mathematical Modeling in Science and Engineering
Title | Mathematical Modeling in Science and Engineering PDF eBook |
Author | Ismael Herrera |
Publisher | John Wiley & Sons |
Pages | 259 |
Release | 2012-03-19 |
Genre | Technology & Engineering |
ISBN | 1118207203 |
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.