A First Course in the Qualitative Theory of Differential Equations
Title | A First Course in the Qualitative Theory of Differential Equations PDF eBook |
Author | James Hetao Liu |
Publisher | |
Pages | 584 |
Release | 2003 |
Genre | Juvenile Nonfiction |
ISBN |
This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.
The Qualitative Theory of Ordinary Differential Equations
Title | The Qualitative Theory of Ordinary Differential Equations PDF eBook |
Author | Fred Brauer |
Publisher | Courier Corporation |
Pages | 325 |
Release | 2012-12-11 |
Genre | Mathematics |
ISBN | 0486151514 |
Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.
A First Course in Ordinary Differential Equations
Title | A First Course in Ordinary Differential Equations PDF eBook |
Author | Suman Kumar Tumuluri |
Publisher | CRC Press |
Pages | 338 |
Release | 2021-03-24 |
Genre | Mathematics |
ISBN | 100035671X |
A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like real analysis, linear algebra are stated clearly in the book. This enables the book to be accessible to physics and engineering students also. Moreover, sufficient number of worked out examples are presented to illustrate every new technique introduced in this book. Moreover, the author elucidates the importance of various hypotheses in the results by providing counter examples. Features Offers comprehensive coverage of all essential topics required for an introductory course in ODE. Emphasizes on both computation of solutions to ODEs as well as the theoretical concepts like well-posedness, comparison results, stability etc. Systematic presentation of insights of the nature of the solutions to linear/non-linear ODEs. Special attention on the study of asymptotic behavior of solutions to autonomous ODEs (both for scalar case and 2✕2 systems). Sufficient number of examples are provided wherever a notion is introduced. Contains a rich collection of problems. This book serves as a text book for undergraduate students and a reference book for scientists and engineers. Broad coverage and clear presentation of the material indeed appeals to the readers. Dr. Suman K. Tumuluri has been working in University of Hyderabad, India, for 11 years and at present he is an associate professor. His research interests include applications of partial differential equations in population dynamics and fluid dynamics.
Qualitative Theory of Planar Differential Systems
Title | Qualitative Theory of Planar Differential Systems PDF eBook |
Author | Freddy Dumortier |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2006-10-13 |
Genre | Mathematics |
ISBN | 3540329021 |
This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.
The Theory of Differential Equations
Title | The Theory of Differential Equations PDF eBook |
Author | Walter G. Kelley |
Publisher | Springer Science & Business Media |
Pages | 434 |
Release | 2010-04-15 |
Genre | Mathematics |
ISBN | 1441957839 |
For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.
Differential Equations and Their Applications
Title | Differential Equations and Their Applications PDF eBook |
Author | M. Braun |
Publisher | Springer Science & Business Media |
Pages | 733 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 1475749694 |
For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.
Ordinary Differential Equations
Title | Ordinary Differential Equations PDF eBook |
Author | Jane Cronin |
Publisher | CRC Press |
Pages | 408 |
Release | 2007-12-14 |
Genre | Mathematics |
ISBN | 1420014935 |
Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of