A First Course in Bayesian Statistical Methods

A First Course in Bayesian Statistical Methods
Title A First Course in Bayesian Statistical Methods PDF eBook
Author Peter D. Hoff
Publisher Springer Science & Business Media
Pages 270
Release 2009-06-02
Genre Mathematics
ISBN 0387924078

Download A First Course in Bayesian Statistical Methods Book in PDF, Epub and Kindle

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

A First Course in Statistical Methods

A First Course in Statistical Methods
Title A First Course in Statistical Methods PDF eBook
Author Lyman Ott
Publisher Duxbury Resource Center
Pages 0
Release 2004
Genre Mathematical statistics
ISBN 9780534408060

Download A First Course in Statistical Methods Book in PDF, Epub and Kindle

A FIRST COURSE IN STATISTICAL METHODS addresses a pressing need in the methods course-a shorter text designed for a one-term course. By selecting and revising material from their best-selling two-semester text, AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Fifth Edition, the authors created an ideal book for a one-term course in statistical methods. Based on the belief that statistics is a thought process tied to the scientific method, the text utilizes a 5-step approach: 1) defining the problem, 2) collecting data, 3) summarizing data, 4) analyzing and interpreting the data, and 5) communicating the results of the analysis.

Statistical Concepts - A Second Course

Statistical Concepts - A Second Course
Title Statistical Concepts - A Second Course PDF eBook
Author Debbie L. Hahs-Vaughn
Publisher Routledge
Pages 534
Release 2013-06-19
Genre Psychology
ISBN 113649006X

Download Statistical Concepts - A Second Course Book in PDF, Epub and Kindle

Statistical Concepts consists of the last 9 chapters of An Introduction to Statistical Concepts, 3rd ed. Designed for the second course in statistics, it is one of the few texts that focuses just on intermediate statistics. The book highlights how statistics work and what they mean to better prepare students to analyze their own data and interpret SPSS and research results. As such it offers more coverage of non-parametric procedures used when standard assumptions are violated since these methods are more frequently encountered when working with real data. Determining appropriate sample sizes is emphasized throughout. Only crucial equations are included. The new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. Much more on computing confidence intervals and conducting power analyses using G*Power. All new SPSS version 19 screenshots to help navigate through the program and annotated output to assist in the interpretation of results. Sections on how to write-up statistical results in APA format and new templates for writing research questions. New learning tools including chapter-opening vignettes, outlines, a list of key concepts, "Stop and Think" boxes, and many more examples, tables, and figures. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website with Power Points, answers to the even-numbered problems, detailed solutions to the odd-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets. Each chapter begins with an outline, a list of key concepts, and a research vignette related to the concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides tips for how to run SPSS and develop an APA style write-up. Tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. Each chapter includes computational, conceptual, and interpretive problems. Answers to the odd-numbered problems are provided. The SPSS data sets that correspond to the book’s examples and problems are available on the web. The book covers basic and advanced analysis of variance models and topics not dealt with in other texts such as robust methods, multiple comparison and non-parametric procedures, and multiple and logistic regression models. Intended for courses in intermediate statistics and/or statistics II taught in education and/or the behavioral sciences, predominantly at the master's or doctoral level. Knowledge of introductory statistics is assumed.

A First Course in Statistical Programming with R

A First Course in Statistical Programming with R
Title A First Course in Statistical Programming with R PDF eBook
Author John Braun
Publisher
Pages 163
Release 2007
Genre Computers
ISBN 9780521872652

Download A First Course in Statistical Programming with R Book in PDF, Epub and Kindle

The only introduction you'll need to start programming in R.

A First Course in Quality Engineering

A First Course in Quality Engineering
Title A First Course in Quality Engineering PDF eBook
Author K.S. Krishnamoorthi
Publisher CRC Press
Pages 636
Release 2011-08-29
Genre Business & Economics
ISBN 1439840342

Download A First Course in Quality Engineering Book in PDF, Epub and Kindle

Completely revised and updated, A First Course in Quality Engineering: Integrating Statistical and Management Methods of Quality, Second Edition contains virtually all the information an engineer needs to function as a quality engineer. The authors not only break things down very simply but also give a full understanding of why each topic covered is essential to learning proper quality management. They present the information in a manner that builds a strong foundation in quality management without overwhelming readers. See what’s new in the new edition: Reflects changes in the latest revision of the ISO 9000 Standards and the Baldrige Award criteria Includes new mini-projects and examples throughout Incorporates Lean methods for reducing cycle time, increasing throughput, and reducing waste Contains increased coverage of strategic planning This text covers management and statistical methods of quality engineering in an integrative manner, unlike other books on the subject that focus primarily on one of the two areas of quality. The authors illustrate the use of quality methods with examples drawn from their consulting work, using a reader-friendly style that makes the material approachable and encourages self-study. They cover the must-know fundamentals of probability and statistics and make extensive use of computer software to illustrate the use of the computer in solving quality problems. Reorganized to make the book suitable for self study, the second edition discusses how to design Total Quality System that works. With detailed coverage of the management and statistical tools needed to make the system perform well, the book provides a useful reference for professionals who need to implement quality systems in any environment and candidates preparing for the exams to qualify as a certified quality engineer (CQE).

Multivariate Statistical Methods

Multivariate Statistical Methods
Title Multivariate Statistical Methods PDF eBook
Author George A. Marcoulides
Publisher Psychology Press
Pages 335
Release 2014-01-14
Genre Psychology
ISBN 1317778553

Download Multivariate Statistical Methods Book in PDF, Epub and Kindle

Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate method. Many computer examples--drawing on SAS software --are used as demonstrations. Throughout the book, the computer is used as an adjunct to the presentation of a multivariate statistical method in an empirically oriented approach. Basically, the model adopted in this book is to first present the theory of a multivariate statistical method along with the basic mathematical computations necessary for the analysis of data. Subsequently, a real world problem is discussed and an example data set is provided for analysis. Throughout the presentation and discussion of a method, many references are made to the computer, output are explained, and exercises and examples with real data are included.

Elementary Statistical Methods

Elementary Statistical Methods
Title Elementary Statistical Methods PDF eBook
Author G. Barrie Wetherill
Publisher Springer
Pages 341
Release 2013-11-11
Genre Mathematics
ISBN 1489932887

Download Elementary Statistical Methods Book in PDF, Epub and Kindle

This book is mainly based on lectures given by Professor D. R. Cox and myself at Birkbeck College over a period of eight to nine years. It began as a joint venture, but pressure of other work made it necessary for Professor Cox to withdraw early on. I have throughout received much valuable advice and encouragement from Professor Cox, but of course, I am solely responsible for the text, and any errors remaining in it. The book is intended as a first course on statistical methods, and there is a liberal supply of exercises. Although the mathematical level of the book is low, I have tried to explain carefully the logical reasoning behind the use of the methods discussed. Some of the exercises which require more difficult mathematics are marked with an asterisk, and these may be omitted. In this way, I hope that the book will satisfy the needs for a course on statistical methods at a range of mathematical levels. It is essential for the reader to work through the numerical exercises, for only in this way can he grasp the full meaning and usefulness of the statistical techniques, and gain practice in the interpretation of the results. Chapters 7 and 8 discuss methods appropriate for use on ranked or discrete data, and Chapters 9-12 do not depend on these chapters. Chapters 7 and 8 may therefore be omitted, if desired.