A Field Guide to Hyperbolic Space

A Field Guide to Hyperbolic Space
Title A Field Guide to Hyperbolic Space PDF eBook
Author Margaret Wertheim
Publisher
Pages 97
Release 2007
Genre Geometrical models
ISBN

Download A Field Guide to Hyperbolic Space Book in PDF, Epub and Kindle

Although the properties of hyperbolic space were known for 200 years, it was only in 1997 that mathematician Daina Taimina worked out how to make physical models of it. The method she used was crochet. In this book, Margaret Wertheim presents a brief history of hyperbolic space in mathematics and nature, and offers a "field guide" to its crocheted manifestations.

Extra/Ordinary

Extra/Ordinary
Title Extra/Ordinary PDF eBook
Author Maria Elena Buszek
Publisher Duke University Press
Pages 321
Release 2011-03-04
Genre Art
ISBN 0822347628

Download Extra/Ordinary Book in PDF, Epub and Kindle

Artists, critics, curators, and scholars develop theories of craft in relation to art, chronicle how fine art institutions understand and exhibit craft media, and offer accounts of activist crafting.

Crocheting Adventures with Hyperbolic Planes

Crocheting Adventures with Hyperbolic Planes
Title Crocheting Adventures with Hyperbolic Planes PDF eBook
Author Daina Taimina
Publisher CRC Press
Pages 865
Release 2018-02-19
Genre Mathematics
ISBN 1351402196

Download Crocheting Adventures with Hyperbolic Planes Book in PDF, Epub and Kindle

Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the crafter or would-be crafter, there are detailed instructions for how to crochet various geometric models and how to use them in explorations. New to the 2nd Edition; Daina Taimina discusses her own adventures with the hyperbolic planes as well as the experiences of some of her readers. Includes recent applications of hyperbolic geometry such as medicine, architecture, fashion & quantum computing.

Hyperbolic Manifolds and Kleinian Groups

Hyperbolic Manifolds and Kleinian Groups
Title Hyperbolic Manifolds and Kleinian Groups PDF eBook
Author Katsuhiko Matsuzaki
Publisher Clarendon Press
Pages 265
Release 1998-04-30
Genre Mathematics
ISBN 0191591203

Download Hyperbolic Manifolds and Kleinian Groups Book in PDF, Epub and Kindle

A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.

Outer Circles

Outer Circles
Title Outer Circles PDF eBook
Author A. Marden
Publisher Cambridge University Press
Pages 393
Release 2007-05-31
Genre Mathematics
ISBN 1139463764

Download Outer Circles Book in PDF, Epub and Kindle

We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

Hyperbolic Manifolds and Discrete Groups

Hyperbolic Manifolds and Discrete Groups
Title Hyperbolic Manifolds and Discrete Groups PDF eBook
Author Michael Kapovich
Publisher Springer Science & Business Media
Pages 486
Release 2009-08-04
Genre Mathematics
ISBN 0817649131

Download Hyperbolic Manifolds and Discrete Groups Book in PDF, Epub and Kindle

Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Geometric Analysis of Hyperbolic Differential Equations: An Introduction

Geometric Analysis of Hyperbolic Differential Equations: An Introduction
Title Geometric Analysis of Hyperbolic Differential Equations: An Introduction PDF eBook
Author S. Alinhac
Publisher Cambridge University Press
Pages
Release 2010-05-20
Genre Mathematics
ISBN 1139485814

Download Geometric Analysis of Hyperbolic Differential Equations: An Introduction Book in PDF, Epub and Kindle

Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.