A Course on Borel Sets
Title | A Course on Borel Sets PDF eBook |
Author | S.M. Srivastava |
Publisher | Springer |
Pages | 271 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 3642854737 |
The roots of Borel sets go back to the work of Baire [8]. He was trying to come to grips with the abstract notion of a function introduced by Dirich let and Riemann. According to them, a function was to be an arbitrary correspondence between objects without giving any method or procedure by which the correspondence could be established. Since all the specific functions that one studied were determined by simple analytic expressions, Baire delineated those functions that can be constructed starting from con tinuous functions and iterating the operation 0/ pointwise limit on a se quence 0/ functions. These functions are now known as Baire functions. Lebesgue [65] and Borel [19] continued this work. In [19], Borel sets were defined for the first time. In his paper, Lebesgue made a systematic study of Baire functions and introduced many tools and techniques that are used even today. Among other results, he showed that Borel functions coincide with Baire functions. The study of Borel sets got an impetus from an error in Lebesgue's paper, which was spotted by Souslin. Lebesgue was trying to prove the following: Suppose / : )R2 -- R is a Baire function such that for every x, the equation /(x,y) = 0 has a. unique solution. Then y as a function 0/ x defined by the above equation is Baire.
A Course on Borel Sets
Title | A Course on Borel Sets PDF eBook |
Author | S.M. Srivastava |
Publisher | Springer Science & Business Media |
Pages | 274 |
Release | 2008-01-09 |
Genre | Mathematics |
ISBN | 0387227679 |
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
A Course on Borel Sets
Title | A Course on Borel Sets PDF eBook |
Author | S.M. Srivastava |
Publisher | Springer Science & Business Media |
Pages | 274 |
Release | 1998-04-13 |
Genre | Mathematics |
ISBN | 0387984127 |
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
Classical Descriptive Set Theory
Title | Classical Descriptive Set Theory PDF eBook |
Author | Alexander Kechris |
Publisher | Springer Science & Business Media |
Pages | 419 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461241901 |
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.
Descriptive Set Theory and Forcing
Title | Descriptive Set Theory and Forcing PDF eBook |
Author | Arnold W. Miller |
Publisher | Cambridge University Press |
Pages | 135 |
Release | 2017-05-18 |
Genre | Mathematics |
ISBN | 1107168066 |
These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets. A first course in mathematical logic and set theory is assumed, making this book suitable for advanced students and researchers.
A Course in Functional Analysis and Measure Theory
Title | A Course in Functional Analysis and Measure Theory PDF eBook |
Author | Vladimir Kadets |
Publisher | Springer |
Pages | 553 |
Release | 2018-07-10 |
Genre | Mathematics |
ISBN | 3319920049 |
Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
An Introduction to Measure Theory
Title | An Introduction to Measure Theory PDF eBook |
Author | Terence Tao |
Publisher | American Mathematical Soc. |
Pages | 206 |
Release | 2021-09-03 |
Genre | Education |
ISBN | 1470466406 |
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.