A Course in Time Series Analysis
Title | A Course in Time Series Analysis PDF eBook |
Author | Daniel Peña |
Publisher | John Wiley & Sons |
Pages | 494 |
Release | 2011-01-25 |
Genre | Mathematics |
ISBN | 1118031229 |
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
A Course in Time Series Analysis
Title | A Course in Time Series Analysis PDF eBook |
Author | Daniel Peña |
Publisher | Wiley-Interscience |
Pages | 504 |
Release | 2001 |
Genre | Mathematics |
ISBN |
This text derives from a number of presentations at the European Advance Course in Statistics (ECAS) in 1997. It aims to shed light on future directions of research in time series, and is written by many researchers in the fields of statistics and econometrics.
A Course in Time Series Analysis
Title | A Course in Time Series Analysis PDF eBook |
Author | Daniel Peña |
Publisher | |
Pages | 460 |
Release | 2001 |
Genre | Time-series analysis |
ISBN |
Forecasting: principles and practice
Title | Forecasting: principles and practice PDF eBook |
Author | Rob J Hyndman |
Publisher | OTexts |
Pages | 380 |
Release | 2018-05-08 |
Genre | Business & Economics |
ISBN | 0987507117 |
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Time Series Analysis and Its Applications
Title | Time Series Analysis and Its Applications PDF eBook |
Author | Robert H. Shumway |
Publisher | |
Pages | 568 |
Release | 2014-01-15 |
Genre | |
ISBN | 9781475732627 |
Practical Time Series Analysis
Title | Practical Time Series Analysis PDF eBook |
Author | Aileen Nielsen |
Publisher | O'Reilly Media |
Pages | 500 |
Release | 2019-09-20 |
Genre | Computers |
ISBN | 1492041629 |
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Time Series Analysis and Forecasting by Example
Title | Time Series Analysis and Forecasting by Example PDF eBook |
Author | Søren Bisgaard |
Publisher | John Wiley & Sons |
Pages | 346 |
Release | 2011-08-24 |
Genre | Mathematics |
ISBN | 1118056957 |
An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.