A Course in the Geometry of N Dimensions
Title | A Course in the Geometry of N Dimensions PDF eBook |
Author | Maurice G. Kendall |
Publisher | Courier Corporation |
Pages | 82 |
Release | 2004-01-01 |
Genre | Mathematics |
ISBN | 0486439275 |
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
Geometry: A Comprehensive Course
Title | Geometry: A Comprehensive Course PDF eBook |
Author | Dan Pedoe |
Publisher | Courier Corporation |
Pages | 466 |
Release | 2013-04-02 |
Genre | Mathematics |
ISBN | 0486131734 |
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Introduction to the Geometry of N Dimensions
Title | Introduction to the Geometry of N Dimensions PDF eBook |
Author | D. M.Y. Sommerville |
Publisher | Courier Dover Publications |
Pages | 224 |
Release | 2020-03-18 |
Genre | Mathematics |
ISBN | 0486842487 |
Classic exploration of topics of perennial interest to geometers: fundamental ideas of incidence, parallelism, perpendicularity, angles between linear spaces, polytopes. Examines analytical geometry from projective and analytic points of view. 1929 edition.
COURSE IN GEOMETRY OF N DIMENSIONS
Title | COURSE IN GEOMETRY OF N DIMENSIONS PDF eBook |
Author | MAURICE G. KENDALL |
Publisher | |
Pages | 0 |
Release | 2018 |
Genre | |
ISBN | 9781033138748 |
Geometry of Convex Sets
Title | Geometry of Convex Sets PDF eBook |
Author | I. E. Leonard |
Publisher | John Wiley & Sons |
Pages | 340 |
Release | 2015-11-02 |
Genre | Mathematics |
ISBN | 1119022665 |
A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as the PIMS Education Prize in 2002.
Geometry, Relativity and the Fourth Dimension
Title | Geometry, Relativity and the Fourth Dimension PDF eBook |
Author | Rudolf Rucker |
Publisher | Courier Corporation |
Pages | 159 |
Release | 2012-06-08 |
Genre | Science |
ISBN | 0486140334 |
Exposition of fourth dimension, concepts of relativity as Flatland characters continue adventures. Topics include curved space time as a higher dimension, special relativity, and shape of space-time. Includes 141 illustrations.
Lectures on Symplectic Geometry
Title | Lectures on Symplectic Geometry PDF eBook |
Author | Ana Cannas da Silva |
Publisher | Springer |
Pages | 240 |
Release | 2004-10-27 |
Genre | Mathematics |
ISBN | 354045330X |
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.