A Course in Constructive Algebra
Title | A Course in Constructive Algebra PDF eBook |
Author | Ray Mines |
Publisher | Springer Science & Business Media |
Pages | 368 |
Release | 1987-12-18 |
Genre | Mathematics |
ISBN | 9780387966403 |
The constructive approach to mathematics has enjoyed a renaissance, caused in large part by the appearance of Errett Bishop's book Foundations of constr"uctiue analysis in 1967, and by the subtle influences of the proliferation of powerful computers. Bishop demonstrated that pure mathematics can be developed from a constructive point of view while maintaining a continuity with classical terminology and spirit; much more of classical mathematics was preserved than had been thought possible, and no classically false theorems resulted, as had been the case in other constructive schools such as intuitionism and Russian constructivism. The computers created a widespread awareness of the intuitive notion of an effecti ve procedure, and of computation in principle, in addi tion to stimulating the study of constructive algebra for actual implementation, and from the point of view of recursive function theory. In analysis, constructive problems arise instantly because we must start with the real numbers, and there is no finite procedure for deciding whether two given real numbers are equal or not (the real numbers are not discrete) . The main thrust of constructive mathematics was in the direction of analysis, although several mathematicians, including Kronecker and van der waerden, made important contributions to construc tive algebra. Heyting, working in intuitionistic algebra, concentrated on issues raised by considering algebraic structures over the real numbers, and so developed a handmaiden'of analysis rather than a theory of discrete algebraic structures.
A Course in Constructive Algebra
Title | A Course in Constructive Algebra PDF eBook |
Author | Ray Mines |
Publisher | Springer Science & Business Media |
Pages | 355 |
Release | 2012-09-10 |
Genre | Mathematics |
ISBN | 1441986405 |
The constructive approach to mathematics has enjoyed a renaissance, caused in large part by the appearance of Errett Bishop's book Foundations of constr"uctiue analysis in 1967, and by the subtle influences of the proliferation of powerful computers. Bishop demonstrated that pure mathematics can be developed from a constructive point of view while maintaining a continuity with classical terminology and spirit; much more of classical mathematics was preserved than had been thought possible, and no classically false theorems resulted, as had been the case in other constructive schools such as intuitionism and Russian constructivism. The computers created a widespread awareness of the intuitive notion of an effecti ve procedure, and of computation in principle, in addi tion to stimulating the study of constructive algebra for actual implementation, and from the point of view of recursive function theory. In analysis, constructive problems arise instantly because we must start with the real numbers, and there is no finite procedure for deciding whether two given real numbers are equal or not (the real numbers are not discrete) . The main thrust of constructive mathematics was in the direction of analysis, although several mathematicians, including Kronecker and van der waerden, made important contributions to construc tive algebra. Heyting, working in intuitionistic algebra, concentrated on issues raised by considering algebraic structures over the real numbers, and so developed a handmaiden'of analysis rather than a theory of discrete algebraic structures.
Commutative Algebra: Constructive Methods
Title | Commutative Algebra: Constructive Methods PDF eBook |
Author | Henri Lombardi |
Publisher | Springer |
Pages | 1033 |
Release | 2015-07-22 |
Genre | Mathematics |
ISBN | 940179944X |
Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is required. Commutative Algebra: Constructive Methods will be useful for graduate students, and also researchers, instructors and theoretical computer scientists.
A Primer of Algebraic Geometry
Title | A Primer of Algebraic Geometry PDF eBook |
Author | Huishi Li |
Publisher | CRC Press |
Pages | 393 |
Release | 2017-12-19 |
Genre | Mathematics |
ISBN | 1482270331 |
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
A Course in Universal Algebra
Title | A Course in Universal Algebra PDF eBook |
Author | S. Burris |
Publisher | Springer |
Pages | 276 |
Release | 2011-10-21 |
Genre | Mathematics |
ISBN | 9781461381327 |
Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.
Algorithmic Algebraic Number Theory
Title | Algorithmic Algebraic Number Theory PDF eBook |
Author | M. Pohst |
Publisher | Cambridge University Press |
Pages | 520 |
Release | 1997-09-25 |
Genre | Mathematics |
ISBN | 9780521596695 |
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
Linear Algebra
Title | Linear Algebra PDF eBook |
Author | Harold M. Edwards |
Publisher | Springer Science & Business Media |
Pages | 202 |
Release | 2004-10-15 |
Genre | Mathematics |
ISBN | 0817643702 |
* Proposes a radically new and thoroughly algorithmic approach to linear algebra * Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples * Designed for a one-semester course, this text gives the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject