A Course in Abstract Analysis

A Course in Abstract Analysis
Title A Course in Abstract Analysis PDF eBook
Author John B. Conway
Publisher American Mathematical Soc.
Pages 385
Release 2012-10-03
Genre Mathematics
ISBN 0821890832

Download A Course in Abstract Analysis Book in PDF, Epub and Kindle

This book covers topics appropriate for a first-year graduate course preparing students for the doctorate degree. The first half of the book presents the core of measure theory, including an introduction to the Fourier transform. This material can easily be covered in a semester. The second half of the book treats basic functional analysis and can also be covered in a semester. After the basics, it discusses linear transformations, duality, the elements of Banach algebras, and C*-algebras. It concludes with a characterization of the unitary equivalence classes of normal operators on a Hilbert space. The book is self-contained and only relies on a background in functions of a single variable and the elements of metric spaces. Following the author's belief that the best way to learn is to start with the particular and proceed to the more general, it contains numerous examples and exercises.

Foundations of Abstract Analysis

Foundations of Abstract Analysis
Title Foundations of Abstract Analysis PDF eBook
Author Jewgeni H. Dshalalow
Publisher Springer Science & Business Media
Pages 756
Release 2012-11-09
Genre Mathematics
ISBN 1461459621

Download Foundations of Abstract Analysis Book in PDF, Epub and Kindle

Foundations of Abstract Analysis is the first of a two book series offered as the second (expanded) edition to the previously published text Real Analysis. It is written for a graduate-level course on real analysis and presented in a self-contained way suitable both for classroom use and for self-study. While this book carries the rigor of advanced modern analysis texts, it elaborates the material in much greater details and therefore fills a gap between introductory level texts (with topics developed in Euclidean spaces) and advanced level texts (exclusively dealing with abstract spaces) making it accessible for a much wider interested audience. To relieve the reader of the potential overload of new words, definitions, and concepts, the book (in its unique feature) provides lists of new terms at the end of each section, in a chronological order. Difficult to understand abstract notions are preceded by informal discussions and blueprints followed by thorough details and supported by examples and figures. To further reinforce the text, hints and solutions to almost a half of more than 580 problems are provided at the end of the book, still leaving ample exercises for assignments. This volume covers topics in point-set topology and measure and integration. Prerequisites include advanced calculus, linear algebra, complex variables, and calculus based probability.

A Course in Abstract Harmonic Analysis

A Course in Abstract Harmonic Analysis
Title A Course in Abstract Harmonic Analysis PDF eBook
Author Gerald B. Folland
Publisher CRC Press
Pages 317
Release 2016-02-03
Genre Mathematics
ISBN 1498727158

Download A Course in Abstract Harmonic Analysis Book in PDF, Epub and Kindle

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul

Real and Abstract Analysis

Real and Abstract Analysis
Title Real and Abstract Analysis PDF eBook
Author E. Hewitt
Publisher Springer Science & Business Media
Pages 485
Release 2012-12-06
Genre Mathematics
ISBN 3642880444

Download Real and Abstract Analysis Book in PDF, Epub and Kindle

This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of M athe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].

Introduction to Abstract Analysis

Introduction to Abstract Analysis
Title Introduction to Abstract Analysis PDF eBook
Author W. Light
Publisher CRC Press
Pages 212
Release 1990-07-01
Genre Mathematics
ISBN 9780412310904

Download Introduction to Abstract Analysis Book in PDF, Epub and Kindle

Abstract analysis, and particularly the language of normed linear spaces, now lies at the heart of a major portion of modern mathematics. Unfortunately, it is also a subject which students seem to find quite challenging and difficult. This book presumes that the student has had a first course in mathematical analysis or advanced calculus, but it does not presume the student has achieved mastery of such a course. Accordingly, a gentle introduction to the basic notions of convergence of sequences, continuity of functions, open and closed set, compactness, completeness and separability is given. The pace in the early chapters does not presume in any way that the readers have at their fingertips the techniques provided by an introductory course. Instead, considerable care is taken to introduce and use the basic methods of proof in a slow and explicit fashion. As the chapters progress, the pace does quicken and later chapters on differentiation, linear mappings, integration and the implicit function theorem delve quite deeply into interesting mathematical areas. There are many exercises and many examples of applications of the theory to diverse areas of mathematics. Some of these applications take considerable space and time to develop, and make interesting reading in their own right. The treatment of the subject is deliberately not a comprehensive one. The aim is to convince the undergraduate reader that analysis is a stimulating, useful, powerful and comprehensible tool in modern mathematics. This book will whet the readers' appetite, not overwhelm them with material.

Foundations of Real and Abstract Analysis

Foundations of Real and Abstract Analysis
Title Foundations of Real and Abstract Analysis PDF eBook
Author Douglas S. Bridges
Publisher
Pages 344
Release 2014-01-15
Genre
ISBN 9781475771602

Download Foundations of Real and Abstract Analysis Book in PDF, Epub and Kindle

A First Course in Functional Analysis

A First Course in Functional Analysis
Title A First Course in Functional Analysis PDF eBook
Author Orr Moshe Shalit
Publisher CRC Press
Pages 257
Release 2017-03-16
Genre Mathematics
ISBN 1498771629

Download A First Course in Functional Analysis Book in PDF, Epub and Kindle

Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.