A Concise Course on Stochastic Partial Differential Equations
Title | A Concise Course on Stochastic Partial Differential Equations PDF eBook |
Author | Claudia Prévôt |
Publisher | Springer Science & Business Media |
Pages | 149 |
Release | 2007-06-08 |
Genre | Mathematics |
ISBN | 3540707808 |
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.
A Concise Course on Stochastic Partial Differential Equations
Title | A Concise Course on Stochastic Partial Differential Equations PDF eBook |
Author | Claudia Prévôt |
Publisher | Springer |
Pages | 149 |
Release | 2007-05-26 |
Genre | Mathematics |
ISBN | 3540707816 |
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.
Stochastic Differential Equations in Infinite Dimensions
Title | Stochastic Differential Equations in Infinite Dimensions PDF eBook |
Author | Leszek Gawarecki |
Publisher | Springer Science & Business Media |
Pages | 300 |
Release | 2010-11-29 |
Genre | Mathematics |
ISBN | 3642161944 |
The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, professionals working with mathematical models of finance. Major methods include compactness, coercivity, monotonicity, in a variety of set-ups. The authors emphasize the fundamental work of Gikhman and Skorokhod on the existence and uniqueness of solutions to stochastic differential equations and present its extension to infinite dimension. They also generalize the work of Khasminskii on stability and stationary distributions of solutions. New results, applications, and examples of stochastic partial differential equations are included. This clear and detailed presentation gives the basics of the infinite dimensional version of the classic books of Gikhman and Skorokhod and of Khasminskii in one concise volume that covers the main topics in infinite dimensional stochastic PDE’s. By appropriate selection of material, the volume can be adapted for a 1- or 2-semester course, and can prepare the reader for research in this rapidly expanding area.
A Minicourse on Stochastic Partial Differential Equations
Title | A Minicourse on Stochastic Partial Differential Equations PDF eBook |
Author | Robert C. Dalang |
Publisher | Springer Science & Business Media |
Pages | 230 |
Release | 2009 |
Genre | Mathematics |
ISBN | 3540859934 |
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
A Course on Rough Paths
Title | A Course on Rough Paths PDF eBook |
Author | Peter K. Friz |
Publisher | Springer Nature |
Pages | 346 |
Release | 2020-05-27 |
Genre | Mathematics |
ISBN | 3030415562 |
With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Applied Stochastic Differential Equations
Title | Applied Stochastic Differential Equations PDF eBook |
Author | Simo Särkkä |
Publisher | Cambridge University Press |
Pages | 327 |
Release | 2019-05-02 |
Genre | Business & Economics |
ISBN | 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Nonlinear Partial Differential Equations with Applications
Title | Nonlinear Partial Differential Equations with Applications PDF eBook |
Author | Tomás Roubicek |
Publisher | Springer Science & Business Media |
Pages | 415 |
Release | 2006-01-17 |
Genre | Mathematics |
ISBN | 3764373970 |
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.