A Computational Study of Auto-ignition and Flame Propagation in Stratified Mixtures Relevant to Modern Engines

A Computational Study of Auto-ignition and Flame Propagation in Stratified Mixtures Relevant to Modern Engines
Title A Computational Study of Auto-ignition and Flame Propagation in Stratified Mixtures Relevant to Modern Engines PDF eBook
Author Ramanan Sankaran
Publisher
Pages 314
Release 2004
Genre
ISBN

Download A Computational Study of Auto-ignition and Flame Propagation in Stratified Mixtures Relevant to Modern Engines Book in PDF, Epub and Kindle

A Computational Study of Laminar Flame Propagation Into Mixtures with Non-zero Reaction Progress in Engine Conditions

A Computational Study of Laminar Flame Propagation Into Mixtures with Non-zero Reaction Progress in Engine Conditions
Title A Computational Study of Laminar Flame Propagation Into Mixtures with Non-zero Reaction Progress in Engine Conditions PDF eBook
Author
Publisher
Pages 210
Release 2019
Genre Combustion
ISBN

Download A Computational Study of Laminar Flame Propagation Into Mixtures with Non-zero Reaction Progress in Engine Conditions Book in PDF, Epub and Kindle

Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combusion bomb and counter flow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC). The structure of this thesis consists of the introduction of the combustion, the governing equations in thermodynamics and chemical reactions as well as the general structure of the flame. Then, the typicl experimental configuration exploited in the measurement of laminar flame speed is introduced, which is followed by the manifestation of the low temperature chemistry and the gap between the reality and the experimental understandings. Finally, the simulation results of laminar flame speed at constant pressure condition and HCCI engine condition are presented and discussed respectively. The computation of laminar flame speed of lean and stoichiometric mixtures of fuel/air was performed at different ignition reaction progress, by selecting the thermal chemical states corresponding to different residence times during auto-ignition as the flame upstream condition. Using scaling and budget analysis, it is shown that a well-defined flame speed for such a partially reactive mixture in the classical diffusion-reaction limit could still be feasible in the appropriate computational domain, especially with a sufficiently reduced induction length. The comparison of flame speed against different types of progress variables indicates a nearly linear relationship between the flame speed and progress variables based on the fuel mass fraction and temperature. The overall effect of the cool-flame reformation has been studied by comparing the flame speed of the initial mixture and that of the instantaneous mixture under the same thermodynamic conditions. It is found that the enhanced propagation is shown to be largely a thermodynamic effect, while chemistry nevertheless plays an overall retarding role. Sensitivity analysis has been performed to identify the key species which most influence flame propagation at different reaction progress. A general scheme of simplified mixture was constructed to describe flame propagation in a partially reactive mixture, for both lean and stoichiometric, as well as high pressures conditions. The findings and general simplified mixture scheme are validated in HCCI engine conditions.

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines
Title Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines PDF eBook
Author Andreas Manz
Publisher Logos Verlag Berlin GmbH
Pages 263
Release 2016-08-18
Genre Science
ISBN 3832542817

Download Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines Book in PDF, Epub and Kindle

Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.

Computational Study of Flame Development and Propagation in a Spark Ignition Engine with Swirl

Computational Study of Flame Development and Propagation in a Spark Ignition Engine with Swirl
Title Computational Study of Flame Development and Propagation in a Spark Ignition Engine with Swirl PDF eBook
Author Mateen Mahmood Shaikh
Publisher
Pages 146
Release 1992
Genre
ISBN

Download Computational Study of Flame Development and Propagation in a Spark Ignition Engine with Swirl Book in PDF, Epub and Kindle

Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach

Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach
Title Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach PDF eBook
Author Linda Maria Beck
Publisher Logos Verlag Berlin
Pages 0
Release 2013
Genre
ISBN 9783832534264

Download Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach Book in PDF, Epub and Kindle

The virtual development of future Spark Ignition (SI) engine combustion processes in three-dimensional Computational Fluid Dynamics (3D-CFD) demands for the integration of detailed chemistry, enabling - additionally to the 3D-CFD modelling of flow and mixture formation - the prediction of fuel-dependent SI engine combustion in all of its complexity. This work presents an approach, which constitutes a coupled solution for flame propagation, auto-ignition, and emission formation modelling incorporating detailed chemistry, while exhibiting low computational costs. For modelling the regular flame propagation, a laminar flamelet approach, the G-equation is used. Auto-ignition phenomena are addressed using an integrated flamelet approach, which bases on the tabulation of fuel-dependent reaction kinetics. By introducing a progress variable for the auto-ignition - the Ignition Progress Variable (IPV) - detailed chemistry is integrated in 3D-CFD. The modelling of emission formation bases on an interactively coupled flamelet approach, the Transient Interactive Flamelet (TIF) model. The functionality of the combined approach to model the variety of SI engine combustion phenomena is proved first in terms of fundamentals and standalone sub-model functionality studies by introducing a simplified test case, which represents an adiabatic pressure vessel without moving meshes. Following the basic functionality studies, the sub-model functionalities are investigated and validated in adequate engine test cases. It is shown, that the approach allows to detect locally occurring auto-ignition phenomena in the combustion chamber, and to model their interaction with regular flame propagation. Moreover, the approach enables the prediction of emission formation on cell level.

Multi-dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (direct Injection Spark/compression Ignition) Engines

Multi-dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (direct Injection Spark/compression Ignition) Engines
Title Multi-dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (direct Injection Spark/compression Ignition) Engines PDF eBook
Author Zhichao Tan
Publisher
Pages 240
Release 2003
Genre
ISBN

Download Multi-dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (direct Injection Spark/compression Ignition) Engines Book in PDF, Epub and Kindle

Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD)

Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD)
Title Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD) PDF eBook
Author Hanif Kasmani
Publisher
Pages 45
Release 2011
Genre Flame
ISBN

Download Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD) Book in PDF, Epub and Kindle

This thesis deals with the flame propagation in spark ignition engine combustion process using Computational Fluid Dynamic (CFD). This study is based on flame propagation inside the combustion chamber which is important as flame propagation affects the engine efficiency, emission and some more. A 3-D model is created based on the Mitsubishi Magma 4G15 that act as a baseline engine. It is then simulated using CFD where its approaches make it a suitable platform to study the internal combustion engine phenomenon. The project simulates only 50o CA starting from the ignition until the completion of the combustion process. The flame radius obtain through simulation is then compared with the experimental data together with the literature review. However, there are discrepancies of the results due to improper boundary condition and inherit limitation of the model. For further simulation of combustion process must consider detail mixture properties, detail boundary condition and model extension for better accuracy data.