A Celebration of the Mathematical Legacy of Raoul Bott

A Celebration of the Mathematical Legacy of Raoul Bott
Title A Celebration of the Mathematical Legacy of Raoul Bott PDF eBook
Author Peter Robert Kotiuga
Publisher American Mathematical Soc.
Pages 418
Release 2010-01-01
Genre Mathematics
ISBN 082188381X

Download A Celebration of the Mathematical Legacy of Raoul Bott Book in PDF, Epub and Kindle

A History in Sum

A History in Sum
Title A History in Sum PDF eBook
Author Steve Nadis
Publisher Harvard University Press
Pages 272
Release 2013-11-01
Genre Mathematics
ISBN 0674727894

Download A History in Sum Book in PDF, Epub and Kindle

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics—an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors—William Fogg Osgood and Maxime Bôcher—undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators—students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.

Introductory Lectures on Equivariant Cohomology

Introductory Lectures on Equivariant Cohomology
Title Introductory Lectures on Equivariant Cohomology PDF eBook
Author Loring W. Tu
Publisher Princeton University Press
Pages 338
Release 2020-03-03
Genre Mathematics
ISBN 0691197482

Download Introductory Lectures on Equivariant Cohomology Book in PDF, Epub and Kindle

This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.

Research in History and Philosophy of Mathematics

Research in History and Philosophy of Mathematics
Title Research in History and Philosophy of Mathematics PDF eBook
Author Maria Zack
Publisher Springer Nature
Pages 190
Release 2024-01-18
Genre Mathematics
ISBN 3031461932

Download Research in History and Philosophy of Mathematics Book in PDF, Epub and Kindle

This volume contains 8 papers that have been collected by the Canadian Society for History and Philosophy of Mathematics. It showcases rigorously reviewed contemporary scholarship on an interesting variety of topics in the history and philosophy of mathematics.Some of the topics explored include: A way to rethink how logic is taught to philosophy students by using a rejuvenated version of the Aristotelian idea of an argument schema A quantitative approach using data from Wikipedia to study collaboration between nineteenth-century British mathematicians The depiction and perception of Émilie Du Châtelet’s scientific contributions as viewed through the frontispieces designed for books written by or connected to her A study of the Cambridge Women’s Research Club, a place where British women were able to participate in scholarly scientific discourse in the middle of the twentieth century An examination of the research and writing process of mathematicians by looking at their drafts and other preparatory notes A global history of al-Khwārāzmī’s Kitāb al-jabr wa-l-muqābala as obtained by tracing its reception through numerous translations and commentaries Written by leading scholars in the field, these papers are accessible not only to mathematicians and students of the history and philosophy of mathematics, but also to anyone with a general interest in mathematics.

Peter Lax, Mathematician

Peter Lax, Mathematician
Title Peter Lax, Mathematician PDF eBook
Author Reuben Hersh
Publisher American Mathematical Soc.
Pages 298
Release 2014-12-29
Genre Biography & Autobiography
ISBN 1470417081

Download Peter Lax, Mathematician Book in PDF, Epub and Kindle

This book is a biography of one of the most famous and influential living mathematicians, Peter Lax. He is virtually unique as a preeminent leader in both pure and applied mathematics, fields which are often seen as competing and incompatible. Although he has been an academic for all of his adult life, his biography is not without drama and tragedy. Lax and his family barely escaped to the U.S. from Budapest before the Holocaust descended. He was one of the youngest scientists to work on the Manhattan Project. He played a leading role in coping with the infamous "kidnapping" of the NYU mathematics department's computer, in 1970. The list of topics in which Lax made fundamental and long-lasting contributions is remarkable: scattering theory, solitons, shock waves, and even classical analysis, to name a few. His work has been honored many times, including the Abel Prize in 2005. The book concludes with an account of his most important mathematical contributions, made accessible without heavy prerequisites. Reuben Hersh has written extensively on mathematics. His book with Philip Davis, The Mathematical Experience, won the National Book Award in science. Hersh is emeritus professor of mathematics at the University of New Mexico.

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry
Title Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry PDF eBook
Author Giuseppe Dito
Publisher World Scientific
Pages 537
Release 2013-01-11
Genre Mathematics
ISBN 9814425028

Download Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry Book in PDF, Epub and Kindle

Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.

String-Math 2013

String-Math 2013
Title String-Math 2013 PDF eBook
Author Ron Donagi, Michael R. Douglas
Publisher American Mathematical Soc.
Pages 386
Release 2014-12-02
Genre Mathematics
ISBN 1470410516

Download String-Math 2013 Book in PDF, Epub and Kindle

This volume contains the proceedings of the conference `String-Math 2013' which was held June 17-21, 2013 at the Simons Center for Geometry and Physics at Stony Brook University. This was the third in a series of annual meetings devoted to the interface of mathematics and string theory. Topics include the latest developments in supersymmetric and topological field theory, localization techniques, the mathematics of quantum field theory, superstring compactification and duality, scattering amplitudes and their relation to Hodge theory, mirror symmetry and two-dimensional conformal field theory, and many more. This book will be important reading for researchers and students in the area, and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.