The Wild World of 4-Manifolds
Title | The Wild World of 4-Manifolds PDF eBook |
Author | Alexandru Scorpan |
Publisher | American Mathematical Soc. |
Pages | 642 |
Release | 2005-05-10 |
Genre | Mathematics |
ISBN | 0821837494 |
What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.
4-Manifolds and Kirby Calculus
Title | 4-Manifolds and Kirby Calculus PDF eBook |
Author | Robert E. Gompf |
Publisher | American Mathematical Soc. |
Pages | 576 |
Release | 1999 |
Genre | Mathematics |
ISBN | 0821809946 |
Presents an exposition of Kirby calculus, or handle body theory on 4-manifolds. This book includes such topics as branched coverings and the geography of complex surfaces, elliptic and Lefschetz fibrations, $h$-cobordisms, symplectic 4-manifolds, and Stein surfaces.
4-manifolds
Title | 4-manifolds PDF eBook |
Author | Selman Akbulut |
Publisher | Oxford University Press |
Pages | 275 |
Release | 2016 |
Genre | Mathematics |
ISBN | 0198784864 |
This book presents the topology of smooth 4-manifolds in an intuitive self-contained way, developed over a number of years by Professor Akbulut. The text is aimed at graduate students and focuses on the teaching and learning of the subject, giving a direct approach to constructions and theorems which are supplemented by exercises to help the reader work through the details not covered in the proofs. The book contains a hundred colour illustrations to demonstrate the ideas rather than providing long-winded and potentially unclear explanations. Key results have been selected that relate to the material discussed and the author has provided examples of how to analyse them with the techniques developed in earlier chapters.
The Topology of 4-Manifolds
Title | The Topology of 4-Manifolds PDF eBook |
Author | Robion C. Kirby |
Publisher | Springer |
Pages | 114 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 354046171X |
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
Instantons and Four-Manifolds
Title | Instantons and Four-Manifolds PDF eBook |
Author | Daniel S. Freed |
Publisher | Springer Science & Business Media |
Pages | 212 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461397030 |
From the reviews of the first edition: "This book exposes the beautiful confluence of deep techniques and ideas from mathematical physics and the topological study of the differentiable structure of compact four-dimensional manifolds, compact spaces locally modeled on the world in which we live and operate... The book is filled with insightful remarks, proofs, and contributions that have never before appeared in print. For anyone attempting to understand the work of Donaldson and the applications of gauge theories to four-dimensional topology, the book is a must." #Science#1 "I would strongly advise the graduate student or working mathematician who wishes to learn the analytic aspects of this subject to begin with Freed and Uhlenbeck's book." #Bulletin of the American Mathematical Society#2
Smooth Four-Manifolds and Complex Surfaces
Title | Smooth Four-Manifolds and Complex Surfaces PDF eBook |
Author | Robert Friedman |
Publisher | Springer Science & Business Media |
Pages | 532 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662030284 |
In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.
The Geometry of Four-manifolds
Title | The Geometry of Four-manifolds PDF eBook |
Author | S. K. Donaldson |
Publisher | Oxford University Press |
Pages | 464 |
Release | 1997 |
Genre | Language Arts & Disciplines |
ISBN | 9780198502692 |
This text provides an accessible account to the modern study of the geometry of four-manifolds. Prerequisites are a firm grounding in differential topology and geometry, as may be gained from the first year of a graduate course.