1993 IEEE International Conference on Neural Networks, San Francisco, California, March 28-April 1, 1993
Title | 1993 IEEE International Conference on Neural Networks, San Francisco, California, March 28-April 1, 1993 PDF eBook |
Author | |
Publisher | |
Pages | 880 |
Release | 1993 |
Genre | Neural circuitry |
ISBN |
IEEE ... International Conference on Neural Networks
Title | IEEE ... International Conference on Neural Networks PDF eBook |
Author | |
Publisher | |
Pages | 648 |
Release | 1993 |
Genre | Artificial intelligence |
ISBN |
Algorithms and Architectures
Title | Algorithms and Architectures PDF eBook |
Author | Cornelius T. Leondes |
Publisher | Elsevier |
Pages | 485 |
Release | 1998-02-09 |
Genre | Computers |
ISBN | 0080498981 |
This volume is the first diverse and comprehensive treatment of algorithms and architectures for the realization of neural network systems. It presents techniques and diverse methods in numerous areas of this broad subject. The book covers major neural network systems structures for achieving effective systems, and illustrates them with examples. This volume includes Radial Basis Function networks, the Expand-and-Truncate Learning algorithm for the synthesis of Three-Layer Threshold Networks, weight initialization, fast and efficient variants of Hamming and Hopfield neural networks, discrete time synchronous multilevel neural systems with reduced VLSI demands, probabilistic design techniques, time-based techniques, techniques for reducing physical realization requirements, and applications to finite constraint problems. A unique and comprehensive reference for a broad array of algorithms and architectures, this book will be of use to practitioners, researchers, and students in industrial, manufacturing, electrical, and mechanical engineering, as well as in computer science and engineering. - Radial Basis Function networks - The Expand-and-Truncate Learning algorithm for the synthesis of Three-Layer Threshold Networks - Weight initialization - Fast and efficient variants of Hamming and Hopfield neural networks - Discrete time synchronous multilevel neural systems with reduced VLSI demands - Probabilistic design techniques - Time-based techniques - Techniques for reducing physical realization requirements - Applications to finite constraint problems - Practical realization methods for Hebbian type associative memory systems - Parallel self-organizing hierarchical neural network systems - Dynamics of networks of biological neurons for utilization in computational neuroscience
Connectionist-Symbolic Integration
Title | Connectionist-Symbolic Integration PDF eBook |
Author | Ron Sun |
Publisher | Psychology Press |
Pages | 394 |
Release | 2013-04-15 |
Genre | Psychology |
ISBN | 1134802137 |
A variety of ideas, approaches, and techniques exist -- in terms of both architecture and learning -- and this abundance seems to lead to many exciting possibilities in terms of theoretical advances and application potentials. Despite the apparent diversity, there is clearly an underlying unifying theme: architectures that bring together symbolic and connectionist models to achieve a synthesis and synergy of the two different paradigms, and the learning and knowledge acquisition methods for developing such architectures. More effort needs to be extended to exploit the possibilities and opportunities in this area. This book is the outgrowth of The IJCAI Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, held in conjunction with the fourteenth International Joint Conference on Artificial Intelligence (IJCAI '95). Featuring various presentations and discussions, this two-day workshop brought to light many new ideas, controversies, and syntheses which lead to the present volume. This book is concerned with the development, analysis, and application of hybrid connectionist-symbolic models in artificial intelligence and cognitive science. Drawing contributions from a large international group of experts, it describes and compares a variety of models in this area. The types of models discussed cover a wide range of the evolving spectrum of hybrid models, thus serving as a well-balanced progress report on the state of the art. As such, this volume provides an information clearinghouse for various proposed approaches and models that share the common belief that connectionist and symbolic models can be usefully combined and integrated, and such integration may lead to significant advances in understanding intelligence.
Advances in Genetic Programming
Title | Advances in Genetic Programming PDF eBook |
Author | Kenneth E. Kinnear (Jr.) |
Publisher | MIT Press |
Pages | 544 |
Release | 1994 |
Genre | Computers |
ISBN | 9780262111881 |
Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.
Data Mining with Computational Intelligence
Title | Data Mining with Computational Intelligence PDF eBook |
Author | Lipo Wang |
Publisher | Springer Science & Business Media |
Pages | 280 |
Release | 2005-12-08 |
Genre | Computers |
ISBN | 3540288031 |
Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, banking, retail, and many others. Wang and Fu present in detail the state of the art on how to utilize fuzzy neural networks, multilayer perceptron neural networks, radial basis function neural networks, genetic algorithms, and support vector machines in such applications. They focus on three main data mining tasks: data dimensionality reduction, classification, and rule extraction. The book is targeted at researchers in both academia and industry, while graduate students and developers of data mining systems will also profit from the detailed algorithmic descriptions.
Neural Networks And Systolic Array Design
Title | Neural Networks And Systolic Array Design PDF eBook |
Author | Sankar Kumar Pal |
Publisher | World Scientific |
Pages | 421 |
Release | 2002-06-27 |
Genre | Technology & Engineering |
ISBN | 9814489476 |
Neural networks (NNs) and systolic arrays (SAs) have many similar features. This volume describes, in a unified way, the basic concepts, theories and characteristic features of integrating or formulating different facets of NNs and SAs, as well as presents recent developments and significant applications. The articles, written by experts from all over the world, demonstrate the various ways this integration can be made to efficiently design methodologies, algorithms and architectures, and also implementations, for NN applications. The book will be useful to graduate students and researchers in many related areas, not only as a reference book but also as a textbook for some parts of the curriculum. It will also benefit researchers and practitioners in industry and R&D laboratories who are working in the fields of system design, VLSI, parallel processing, neural networks, and vision.