Vertebrate Photoreceptors
Title | Vertebrate Photoreceptors PDF eBook |
Author | Takahisa Furukawa |
Publisher | Springer |
Pages | 0 |
Release | 2016-08-23 |
Genre | Medical |
ISBN | 9784431563358 |
This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.
Photoreceptor Optics
Title | Photoreceptor Optics PDF eBook |
Author | A.W. Snyder |
Publisher | Springer Science & Business Media |
Pages | 523 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642809340 |
The above consideration indicates that at present many of the experi mental facts on PS in animals can be quantitatively explained within the limits of the "universal" photoreceptor membrane concept. Of course, existence of preferential orientation of the absorbing dipoles in the tubuli of the rhabdomeres can not be totally rejected. We hope that the concept of the "universal" photoreceptor membrane may serve as the useful instrument when dealing with newly discovered properties of visual cells so that true mechanisms of electrical and optical coupling will be searched for instead of assumptions being made on additional properties of the photoreceptor membrane in every new animal under study. 5. Absorption Spectrum of the Universal Photoreceptor Membrane and Spectral Sensitivity of the Photoreceptor 5. 1 Preliminary Notes It seems nearly self-evident that the absorption spectrum of the pho toreceptor membrane coincides exactly with that of the visual pigment it contains. Hence, the membrane must exhibit three bands of absorp tion - the principal band with its peak within the limits of visible spectrum (or a-peak); the secondary band between 340 and 380 nm (S peak); and the third, protein band, in the ultraviolet (UV) at 280 nm (COLLINS et al. , 1952). The main peak of absorption is located within the range 433-575 nm for retinol-based pigments and between 438 and 620 nm for 3-dehydroretinol-based pigments, the position of Amax de pending on many ecological factors.
Vertebrate Photoreceptor Optics
Title | Vertebrate Photoreceptor Optics PDF eBook |
Author | J.M. Enoch |
Publisher | Springer |
Pages | 512 |
Release | 1981-09 |
Genre | Medical |
ISBN |
With contributions by numerous experts
Vertebrate Photoreceptor Optics
Title | Vertebrate Photoreceptor Optics PDF eBook |
Author | Jay M. Enoch |
Publisher | Springer Verlag |
Pages | 0 |
Release | 1981 |
Genre | Science |
ISBN | 9780387105154 |
Webvision
Title | Webvision PDF eBook |
Author | Helga Kolb |
Publisher | |
Pages | |
Release | 2007 |
Genre | |
ISBN |
High Resolution Imaging in Microscopy and Ophthalmology
Title | High Resolution Imaging in Microscopy and Ophthalmology PDF eBook |
Author | Josef F. Bille |
Publisher | Springer |
Pages | 411 |
Release | 2019-08-13 |
Genre | Medical |
ISBN | 3030166384 |
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Vertebrate Photoreceptor Optics
Title | Vertebrate Photoreceptor Optics PDF eBook |
Author | J.M. Enoch |
Publisher | Springer |
Pages | 486 |
Release | 2014-04-18 |
Genre | Technology & Engineering |
ISBN | 9783662135129 |
It is in the receptors of the vertebrate retina that the characteristic visual process - the transduction of radiational energy into physiological activtty of a different kind - takes place. The way these receptors modify or redistribute the incident radiation and thereby control the light ab sorption by the visual pigments they contain, is the central theme of this book. As far back as 1843 Brucke put forward a well-reasoned model for the optics of a receptor, assuming simple ray optics, and it is already some forty-seven years since the dependence of receptor sensitivity on retinal angle of incidence was established experimentally as an important factor in human vision and as one by which the direction of alignment of receptors in the living eye might be determined. But it is to Professor J. M. Enoch, editor and author of several major contributions to this volume, that we owe the first experimental demonstration (in 1961) of the wave-mode propa gation of light in vertebrate visual receptors, as well as the results of some thirty years devoted research concerned with all questions of receptor optics, particularly directional sensitivity and receptor alignment, both for normal vertebrate eyes and for pathologically modified eyes. His work on the latter has opened up a whole range of clinical possibilities.