Variational-Hemivariational Inequalities with Applications
Title | Variational-Hemivariational Inequalities with Applications PDF eBook |
Author | Mircea Sofonea |
Publisher | CRC Press |
Pages | 412 |
Release | 2017-10-23 |
Genre | Mathematics |
ISBN | 1351649299 |
This research monograph represents an outcome of the cross-fertilization between nonlinear functional analysis and mathematical modelling, and demonstrates its application to solid and contact mechanics. Based on authors’ original results, it introduces a general fixed point principle and its application to various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully-selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, it is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics.
Hemivariational Inequalities
Title | Hemivariational Inequalities PDF eBook |
Author | Panagiotis D. Panagiotopoulos |
Publisher | Springer Science & Business Media |
Pages | 453 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 3642516777 |
The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.
Mathematical Theory of Hemivariational Inequalities and Applications
Title | Mathematical Theory of Hemivariational Inequalities and Applications PDF eBook |
Author | Zdzistaw Naniewicz |
Publisher | CRC Press |
Pages | 291 |
Release | 2021-07-28 |
Genre | Mathematics |
ISBN | 1000445054 |
Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established.
Nonlinear Inclusions and Hemivariational Inequalities
Title | Nonlinear Inclusions and Hemivariational Inequalities PDF eBook |
Author | Stanisław Migórski |
Publisher | Springer Science & Business Media |
Pages | 293 |
Release | 2012-09-18 |
Genre | Mathematics |
ISBN | 146144232X |
This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.
Finite Element Method for Hemivariational Inequalities
Title | Finite Element Method for Hemivariational Inequalities PDF eBook |
Author | J. Haslinger |
Publisher | Springer Science & Business Media |
Pages | 298 |
Release | 1999-08-31 |
Genre | Mathematics |
ISBN | 9780792359517 |
Hemivariational inequalities represent an important class of problems in nonsmooth and nonconvex mechanics. By means of them, problems with nonmonotone, possibly multivalued, constitutive laws can be formulated, mathematically analyzed and finally numerically solved. The present book gives a rigorous analysis of finite element approximation for a class of hemivariational inequalities of elliptic and parabolic type. Finite element models are described and their convergence properties are established. Discretized models are numerically treated as nonconvex and nonsmooth optimization problems. The book includes a comprehensive description of typical representants of nonsmooth optimization methods. Basic knowledge of finite element mathematics, functional and nonsmooth analysis is needed. The book is self-contained, and all necessary results from these disciplines are summarized in the introductory chapter. Audience: Engineers and applied mathematicians at universities and working in industry. Also graduate-level students in advanced nonlinear computational mechanics, mathematics of finite elements and approximation theory. Chapter 1 includes the necessary prerequisite materials.
Nonsmooth Variational Problems and Their Inequalities
Title | Nonsmooth Variational Problems and Their Inequalities PDF eBook |
Author | Siegfried Carl |
Publisher | Springer Science & Business Media |
Pages | 404 |
Release | 2007-06-07 |
Genre | Mathematics |
ISBN | 038746252X |
This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.
An Introduction to Theory and Applications of Stationary Variational-Hemivariational Inequalities
Title | An Introduction to Theory and Applications of Stationary Variational-Hemivariational Inequalities PDF eBook |
Author | Weimin Han |
Publisher | Springer Nature |
Pages | 262 |
Release | |
Genre | |
ISBN | 3031742168 |