Ultrasonic Methods in Evaluation of Inhomogeneous Materials

Ultrasonic Methods in Evaluation of Inhomogeneous Materials
Title Ultrasonic Methods in Evaluation of Inhomogeneous Materials PDF eBook
Author A. Alippi
Publisher Springer Science & Business Media
Pages 407
Release 2012-12-06
Genre Technology & Engineering
ISBN 9400935757

Download Ultrasonic Methods in Evaluation of Inhomogeneous Materials Book in PDF, Epub and Kindle

The purpose of the School, the content of which is reflected in this book, is to bring together experiences and knowledge of those acousticians who are particularly sensible to materials and their properties, specifically to those materials that may be called inhomo geneous. The two things together: acoustics and inhomogeneity, define factually a dimension less parameter, AI a, which is the ratio between the sound wavelength and the spatial length of the material where its physical characteristics notably change. An implicit defmition is, therefore, at hand for an inhomogeneous medium, which has the characteristic of a condi tioned definition and sets a looser constraint to the otherwise strict statement of invariance under translations. Composite, biologicai, porous, stratified materials are in the list of inhomogeneous materials, whose technological or structural interest has grown greatly in recent times. Ul trasonic waves offer a means for their investigation, which is valuable for it can be non destructive, continuous in time, spatially localized, dependent on the size of inhomoge neities.

Ultrasonic Nondestructive Testing of Materials

Ultrasonic Nondestructive Testing of Materials
Title Ultrasonic Nondestructive Testing of Materials PDF eBook
Author Karl-Jörg Langenberg
Publisher CRC Press
Pages 756
Release 2012-02-22
Genre Science
ISBN 1439855900

Download Ultrasonic Nondestructive Testing of Materials Book in PDF, Epub and Kindle

This book features a comprehensive discussion of the mathematical foundations of ultrasonic nondestructive testing of materials. The authors include a brief description of the theory of acoustic and electromagnetic fields to underline the similarities and differences with respect to elastodynamics. They also cover vector, elastic plane, and Rayleigh surface waves as well as ultrasonic beams, inverse scattering, and ultrasonic nondestructive imaging. A coordinate-free notation system is used that is easier to understand and navigate than standard index notation.

Ultrasonic Nondestructive Testing of Inhomogeneous Isotropic and Anisotropic Media: Modeling and Imaging

Ultrasonic Nondestructive Testing of Inhomogeneous Isotropic and Anisotropic Media: Modeling and Imaging
Title Ultrasonic Nondestructive Testing of Inhomogeneous Isotropic and Anisotropic Media: Modeling and Imaging PDF eBook
Author Chinta, Prashanth Kumar
Publisher kassel university press GmbH
Pages 173
Release 2013-01-01
Genre Ultrasonic testing
ISBN 386219616X

Download Ultrasonic Nondestructive Testing of Inhomogeneous Isotropic and Anisotropic Media: Modeling and Imaging Book in PDF, Epub and Kindle

This thesis discusses ultrasonic testing by means of numerical modeling and image reconstruction techniques using elastic and acoustic wave fields. Numerical modeling of elastic waves (part one of the thesis) is used to understand the elastic wave scattering due to material defects and the propagation of surface waves in inhomogeneous isotropic and anisotropic media, with special emphasis on transversely isotropic and orthotropic media. Different imaging techniques (part two of the thesis) are investigated to develop a software, implemented in Matlab, which can give imaging results immediately after the measurement almost in real time as it can read and process the data obtained directly from the measurement. Acoustic wave scattering using analytical techniques and imaging techniques based on Radon transform are investigated. The data obtained from the Radon transform are subjected for imaging utilizing the filtered back projection algorithm and the Fourier slice theorem. The fundamentals of elastic wave propagation in solids are extensively elaborated. The point source synthesis to compute the Green’s functions for anisotropic media and the plane wave synthesis to compute slowness, phase and group velocity surfaces are studied. The elastic integral equations for the so called stretched coordinate system are derived. Based on these equations the numerical tool ’Three-dimensional Elastodynamic Finite Integration Technique’ (3D-EFIT) has been enhanced to treat not only isotropic media but also anisotropic media. For fast computation, the 3D-EFIT code using the Message Passing Interface (MPI) is used by which processing on massive parallel computers is made possible. In 3D-EFIT the Convolutional Perfectly Matched Layers (CPML) can also be applied to absorb the elastic body waves as well as the surface and evanescent waves. 3D-EFIT for homogeneous anisotropic media is validated by comparing computed Green’s functions with an analytical solution. After the validation, the applications of EFIT such as elastic wave modeling in inhomogeneous austenitic steel welds and inhomogeneous orthotropic wooden structures are presented. The results of the 2D-EFIT and 3D-EFIT modeling are compared against measurements performed at Federal Institute for Materials Research and Testing (BAM). After the modeling part of the thesis, inverse scattering techniques for fast imaging of inhomogeneities are studied. For three-dimensional imaging of defects in concrete, the Synthetic Aperture and Focusing Technique (SAFT) and Fourier Transformed Synthetic aperture Focusing Technique (FT-SAFT) are applied to data measured using a transducer array. The seismic Dip-Moveout (DMO) method has been utilized to convert measured bistatic data into monostatic data. A special treatment of SAFT as a technique for back propagation of the wave fields using time reversal, utilizing the knowledge of the geometry, is presented. Finally, time domain anisotropic SAFT (AnSAFT) is studied for image reconstruction of defects in inhomogeneous geometry with orthotropic crystal structure of the embedding medium.

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization

Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization
Title Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization PDF eBook
Author Chi-hau Chen
Publisher World Scientific
Pages 682
Release 2007
Genre Medical
ISBN 9812704094

Download Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization Book in PDF, Epub and Kindle

Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.

Ultrasonic Nondestructive Evaluation

Ultrasonic Nondestructive Evaluation
Title Ultrasonic Nondestructive Evaluation PDF eBook
Author Tribikram Kundu
Publisher CRC Press
Pages 848
Release 2003-12-29
Genre Science
ISBN 9780203501962

Download Ultrasonic Nondestructive Evaluation Book in PDF, Epub and Kindle

Most books on ultrasonic nondestructive evaluation (NDE) focus either on its theoretical background or on advanced applications. Furthermore, information on the most current applications, such as guided wave techniques and acoustic microscopy, is scattered throughout various conference proceedings and journals. No one book has integrated these aspe

The Evaluation of Materials and Structures by Quantitative Ultrasonics

The Evaluation of Materials and Structures by Quantitative Ultrasonics
Title The Evaluation of Materials and Structures by Quantitative Ultrasonics PDF eBook
Author J.D. Achenbach
Publisher Springer
Pages 392
Release 2014-05-04
Genre Technology & Engineering
ISBN 3709143152

Download The Evaluation of Materials and Structures by Quantitative Ultrasonics Book in PDF, Epub and Kindle

Nondestructive evaluation (NDE) procedures are needed for materials processing, as well as for post-process materials testing. They play important roles in product design, analysis of service-life expectancy, manufacturing and quality control of manufactured products. They are also essential to on-line monitoring of the integrity of structural elements and complex systems. Rational accept and reject criteria should be based on NDE tests. Critical safety, efficiency and operational features of large-scale structures depend on adequate NDE capabilities. The lectures presented in this volume are concerned with quantitative ultrasonic NDE. They present fundamental concepts and basic theory, as well as applications to the detection of cracks and the evaluation of material properties. The following topics are discussed: basic wave propagation theory for ultrasonic NDE; piezoelectric transducers, EMATS and ultrasonic spectroscopy; laser-based ultrasonics; acoustoelasticity; ultrasound in solids with porosity, microcracking and polycrystalline structuring; the determination of mechanical properties of composite materials; inverse problems and imaging.

Ultrasonic Nondestructive Testing of Materials

Ultrasonic Nondestructive Testing of Materials
Title Ultrasonic Nondestructive Testing of Materials PDF eBook
Author Karl-Jörg Langenberg
Publisher CRC Press
Pages 774
Release 2012-02-22
Genre Science
ISBN 1439855889

Download Ultrasonic Nondestructive Testing of Materials Book in PDF, Epub and Kindle

Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations explores the mathematical foundations and emerging applications of this testing process, which is based on elastic wave propagation in isotropic and anisotropic solids. In covering ultrasonic nondestructive testing methods, the book emphasizes the engineering point of view, yet it relies on the physics and mathematics aspects involved in elastic wave propagation theory. As a result, this resource becomes a missing link in the literature by combining coverage of the theoretical aspects of testing and providing intuitive assessments of numerous standard problems to illustrate fundamental assertions. Content includes a brief description of the theory of acoustic and electromagnetic fields to underline the similarities and differences as compared to elastodynamics. It also covers vector algebra and analysis, elastic plane and Rayleigh surface waves, and ultrasonic beams, as well as transducer radiation, inverse scattering, and ultrasonic nondestructive imaging. Includes numerical computations to explain wave propagation phenomena and compare results of analytical formulations Although ultrasonic nondestructive testing can often be roughly understood in terms of plane waves and beams, this book addresses the key issues of transducer radiation and defect scattering and imaging, respectively. The authors physically formulate point source synthesis, and, in mathematical terms, they use representation integrals with Green functions, always including intuitive interpretations with mathematical evaluations. Replacing cumbersome index notation with a coordinate-free version, this reference offers step-by-step documentation of relevant tensorial elastodynamic cases involving isotropic and anisotropic materials. It provides all necessary mathematical tools readers require to understand the mathematical and physical basis for ultrasonic nondestructive testing.