Ultracold Atoms in Optical Lattices
Title | Ultracold Atoms in Optical Lattices PDF eBook |
Author | Maciej Lewenstein |
Publisher | Oxford University Press |
Pages | 494 |
Release | 2012-03-08 |
Genre | Science |
ISBN | 0199573123 |
This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.
Ultracold Atomic Physics
Title | Ultracold Atomic Physics PDF eBook |
Author | Hui Zhai |
Publisher | Cambridge University Press |
Pages | 311 |
Release | 2021-02-25 |
Genre | Science |
ISBN | 110849868X |
A modern introduction to ultracold atomic physics combining fundamental theory with discussion of cold atom phenomena and applications.
From Atom Optics to Quantum Simulation
Title | From Atom Optics to Quantum Simulation PDF eBook |
Author | Sebastian Will |
Publisher | Springer Science & Business Media |
Pages | 270 |
Release | 2012-12-15 |
Genre | Science |
ISBN | 3642336337 |
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices
Title | Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices PDF eBook |
Author | Michael L. Wall |
Publisher | Springer |
Pages | 391 |
Release | 2015-04-20 |
Genre | Science |
ISBN | 3319142526 |
This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
Quantum Gas Experiments: Exploring Many-body States
Title | Quantum Gas Experiments: Exploring Many-body States PDF eBook |
Author | Paivi Torma |
Publisher | World Scientific |
Pages | 339 |
Release | 2014-09-16 |
Genre | Science |
ISBN | 1783264772 |
Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.
Synthetic Spin-orbit Coupling In Cold Atoms
Title | Synthetic Spin-orbit Coupling In Cold Atoms PDF eBook |
Author | Wei Zhang |
Publisher | World Scientific |
Pages | 307 |
Release | 2018-07-25 |
Genre | Science |
ISBN | 9813272546 |
This is a review volume covering a wide range of topics in this newly developed research field. The intended audience corresponds to graduate students, post-docs and colleagues working in the field of cold atomic gases. This is the first review volume dedicated to this active research frontier, and provides a comprehensive and pedagogical summary of recent progresses in the field.
Quantum Phase Transitions in Cold Atoms and Low Temperature Solids
Title | Quantum Phase Transitions in Cold Atoms and Low Temperature Solids PDF eBook |
Author | Kaden Richard Alan Hazzard |
Publisher | Springer Science & Business Media |
Pages | 239 |
Release | 2011-06-28 |
Genre | Science |
ISBN | 1441981799 |
The primary focus of this thesis is to theoretically describe nanokelvin experiments in cold atomic gases, which offer the potential to revolutionize our understanding of strongly correlated many-body systems. The thesis attacks major challenges of the field: it proposes and analyzes experimental protocols to create new and interesting states of matter and introduces theoretical techniques to describe probes of these states. The phenomena considered include the fractional quantum Hall effect, spectroscopy of strongly correlated states, and quantum criticality, among others. The thesis also clarifies experiments on disordered quantum solids, which display a variety of exotic phenomena and are candidates to exhibit so-called "supersolidity." It collects experimental results and constrains their interpretation through theoretical considerations. This Doctoral Thesis has been accepted by Cornell University, Ithaca, USA.