Nanotechnology in Construction
Title | Nanotechnology in Construction PDF eBook |
Author | Peter J M Bartos |
Publisher | Royal Society of Chemistry |
Pages | 397 |
Release | 2007-10-31 |
Genre | Technology & Engineering |
ISBN | 1847551521 |
The importance of nanotechnology related research and development has become recognised worldwide. Substantial public and private investment is now being ploughed into research and development in a number of industrial sectors, where nanotechnology has become established and has led to new commercial products. The construction industry, having major economic significance with nano-scale research and development which is only emerging, offers a wide scope for exploitation of nanotechnology. With international contributions from experts in the field, Nanotechnology in Construction amalgamates previously fragmented research and emerging trends. It reflects the inherent multi-disciplinary nature of nano-scale research in construction and contributions cover a wide spectrum, from highly scientific investigations to futuristic applications. The book is organised into four broad sections, the first reviews and analyses the prospects of exploitation of nanotechnology in construction, the second discusses novel tools and their capabilities, the final two sections show existing significant products where nanotechnology has been already been exploited or where product development is under-way. Nanotechnology in Construction will appeal to researchers already working in this field as well as those wishing to enter it. It will also inform governmental and other funding agencies of the most promising future directions and their related timescales. Practical applications are considered and explanations of the underlying basics are given, raising awareness and understanding of what nanotechnology can offer to construction professionals in general.
Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
Title | Ultra-High Performance Concrete and Nanotechnology in Construction. Proceedings of Hipermat 2012. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials PDF eBook |
Author | Insert Name Here |
Publisher | kassel university press GmbH |
Pages | 1059 |
Release | 2012-01-01 |
Genre | Concrete |
ISBN | 3862192644 |
Nanotechnology in Construction
Title | Nanotechnology in Construction PDF eBook |
Author | Konstantin Sobolev |
Publisher | Springer |
Pages | 491 |
Release | 2015-05-07 |
Genre | Technology & Engineering |
ISBN | 3319170880 |
Nanotechnology has already demonstrated surprising potential for improving the performance of construction materials and many of these recent developments were facilitated by NICOM symposia. The NICOM5 proceedings will cover the emerging opportunities and future use of nanotechnology in construction and will illustrate the broad potential for application of nanotechnology to challenging problems involving materials and infrastructure.
Nanotechnology for Smart Concrete
Title | Nanotechnology for Smart Concrete PDF eBook |
Author | Ghasan Fahim Huseien |
Publisher | CRC Press |
Pages | 238 |
Release | 2022-02-11 |
Genre | Technology & Engineering |
ISBN | 1000538710 |
Nanomaterials can markedly improve the mechanical properties of concrete, as well as reduce the porosity and enhance the durability of concrete. The application of nanotechnology in concrete is still in its infancy. However, an ever-growing demand for ultra-high-performance concrete and recurring environmental pollution caused by ordinary Portland cement has encouraged engineers to exploit nanotechnology in the construction industry. Nanotechnology for Smart Concrete discusses the advantages and applications of nanomaterials in the concrete industry, including high-strength performance, microstructural improvement, self-healing, energy storage, and coatings. The book Analyses the linkage of concrete materials with nanomaterials and nanostructures Discusses the applications of nanomaterials in the concrete industry, including energy storage in green buildings, anti-corrosive coatings, and inhibiting pathogens and viruses Covers self-healing concrete Explores safety considerations, sustainability, and environmental impact of nanoconcrete Includes an appendix of solved questions This comprehensive and innovative text serves as a useful reference for upper-level undergraduate students, graduate students, and professionals in the fields of Civil and Construction Engineering, Materials Science and Engineering, and Nanomaterials. Dr. Ghasan Fahim Huseien is a research fellow at the Department of Building, School of Design and Environment, National University of Singapore, Singapore. He received his PhD degree from the University of Technology Malaysia in 2017. Dr. Huseien has over 5 years of Applied R&D and 10 years of experience in manufacturing smart materials for sustainable building and smart cities. He has expertise in Advanced Sustainable Construction Materials covering Civil Engineering, Environmental Sciences and Engineering. He has authored and co-authored 50+ publications and technical reports, 3 books, and 15 book chapters, and participated in 25 national and international conferences/workshops. He is a peer reviewer for several international journals as well as Master’s and PhD students. He is a member of the Concrete Society of Malaysia and the American Concrete Institute. Dr. Nur Hafizah Abd Khalid is a Senior Lecturer at the School of Civil Engineering, Universiti Teknologi, Malaysia (UTM), and is a research member of the Construction Material Research Group (CMRG). She is currently a Council Member of the Concrete Society Malaysia (CSM). She earned her Master’s degree on structure and materials in 2011 from the Universiti Teknologi Malaysia. She received a Young Women Scientist Award (representing Malaysia) in 2014 in South Korea by KWSE/APNN. She is currently appointed as an Inviting Researcher at Hunan University, China, funded under the Talented Young Scientist Program (TYSP). Her research interests focus on concrete structural systems, advanced concrete technology (green concrete technology and fibre reinforced concrete), civil engineering materials, polymer composites, and bio-composites. Professor Dr. Jahangir Mirza has over 35 years of Applied Research and Development (R&D) as well as teaching experience. He has expertise in Advanced Sustainable Construction Materials covering Civil Engineering, Environmental Sciences and Engineering, Chemistry, Earth Sciences, Geology, and Architecture departments. He has been a Senior Scientist at the Research Institute of Hydro-Quebec (IREQ), Montreal, Canada since 1985. He has been a Visiting Research Professor for the Environmental Engineering program at the University of Guelph in Ontario, Canada since 2018.
Ultra-High Performance Concrete UHPC
Title | Ultra-High Performance Concrete UHPC PDF eBook |
Author | Ekkehard Fehling |
Publisher | John Wiley & Sons |
Pages | 198 |
Release | 2015-04-20 |
Genre | Technology & Engineering |
ISBN | 3433030871 |
Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications.
High-performance Construction Materials
Title | High-performance Construction Materials PDF eBook |
Author | Caijun Shi |
Publisher | World Scientific |
Pages | 448 |
Release | 2008 |
Genre | Science |
ISBN | 981279736X |
This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today''s society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.
Ultra-High Performance Concrete and High Performance Building Materials for Sustainable Construction
Title | Ultra-High Performance Concrete and High Performance Building Materials for Sustainable Construction PDF eBook |
Author | Ekkehard Fehling |
Publisher | BoD – Books on Demand |
Pages | 310 |
Release | 2024-01-01 |
Genre | Technology & Engineering |
ISBN | 3737611599 |
Sustainable construction, with the overarching goal of reducing the environmental footprint of everything we build is becoming increasingly important and urgent in the light of the climate change the world is facing. The use of innovative and sustainable building materials, especially concrete as the worldwide most commonly used building material, offers a great opportunity to significantly reduce climate-relevant emissions in the construction sector. Due to their performance and reliable durability, the use of innovative high-performance concretes will help to reduce the need for new constructions and to sustainably repair existing infrastructure. In new buildings in particular, the use of high-performance materials can help to save energy and natural resources, which reduces climate-relevant emissions and thus global warming. With the current HiPerMat 6, we are responding to the growing understanding of the impact of our construction activities on the environment by placing greater emphasis on sustainability issues.