Tutorials in Metamaterials
Title | Tutorials in Metamaterials PDF eBook |
Author | Mikhail A. Noginov |
Publisher | CRC Press |
Pages | 308 |
Release | 2016-04-19 |
Genre | Science |
ISBN | 1420092197 |
From science fiction to science laboratoriesDiscover the State of the Art in Photonic MetamaterialsMetamaterials-composite media with unusual optical properties-have revolutionized the landscape of optical science and engineering over the past decades. Metamaterials have transformed science-fiction-like concepts of superresolution imaging and optic
Tutorials in Metamaterials
Title | Tutorials in Metamaterials PDF eBook |
Author | Mikhail A. Noginov |
Publisher | CRC Press |
Pages | 318 |
Release | 2011-10-25 |
Genre | Technology & Engineering |
ISBN | 1420092189 |
From science fiction to science laboratories Discover the State of the Art in Photonic Metamaterials Metamaterials—composite media with unusual optical properties—have revolutionized the landscape of optical science and engineering over the past decades. Metamaterials have transformed science-fiction-like concepts of superresolution imaging and optical cloaking to the realm of science laboratories, and further promise to transform these into the realm of our everyday life. This new era of optical metamaterials calls for the development of experimental and theoretical methods capable of analyzing optical behavior on the multitude of scales—from the nanometer scale of individual inhomogeneity, to the micrometer level and the larger scale of metamaterials-based devices. Tutorials in Metamaterials offers a collection of chapters that were designed as self-contained tutorials describing photonic metamaterials and the state of the art in metamaterials research. Chapters cover: Linear and nonlinear properties of photonic metamaterials and their potential applications Fabrication techniques for optical metamaterials, ranging from electron-beam lithography, focused ion beam milling, and nanoimprint lithography to direct laser writing Recent achievements in metatamerial research at visible, IR, and microwave frequencies Novel applications of metamaterials for light guiding, steering, and refraction Efforts to compensate and eliminate optical loss by introducing optical gain into the metamaterial matrix A comprehensive overview of metamaterial photonics, this reference is suitable for graduate students as well as physicists and engineers interested in entering this dynamic new field.
Optical Metamaterials
Title | Optical Metamaterials PDF eBook |
Author | Wenshan Cai |
Publisher | Springer Science & Business Media |
Pages | 207 |
Release | 2009-12-01 |
Genre | Science |
ISBN | 1441911510 |
Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. This book details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlens and cloaking devices are also treated in detail and made understandable. The planned monograph can serve as a very timely book for both newcomers and advanced researchers in this extremely rapid evolving field.
Engineered Materials and Metamaterials
Title | Engineered Materials and Metamaterials PDF eBook |
Author | Richard A. Dudley |
Publisher | SPIE-International Society for Optical Engineering |
Pages | |
Release | 2016-06-01 |
Genre | Electronics |
ISBN | 9781510602151 |
"The field of metamaterials arose from a deeper understanding of how electromagnetic waves interact with materials and subwavelength-scaled scattering structures. This opened up the field of metamaterials or engineered materials through advances in understanding how material properties not found in nature could be designed along with advances in fabrication capabilities. Metamaterial advances span the electromagnetic spectrum, with examples being more common at lower (e.g., microwave) frequencies. The microwave or x-band regime has proven to be a good testbed for the first generation of metamaterials, but recently we have seen optical and IR metamaterials emerging as well. The exploitation of these more complex material-wave interactions, based on arrangements of subwavelength scale components, has generated a lot of global activity. We can, in principle, engineer material properties to greatly extend those currently available. This tutorial text presents both the usual and unusual electromagnetic properties of materials, focusing especially man-made or engineered metamaterials. After a review of Maxwell's equations and material properties, the idea of resonant meta-atoms and composite media are introduced. The fabrication of metamaterials and the properties of negative index materials are explained. The difficulties associated with reducing the size of meta-atoms for use at optical frequencies are described, and the use of metamaterials for superresolution imaging is presented in some detail"--
Hyperbolic Metamaterials
Title | Hyperbolic Metamaterials PDF eBook |
Author | Igor I Smolyaninov |
Publisher | Morgan & Claypool Publishers |
Pages | 81 |
Release | 2018-03-23 |
Genre | Technology & Engineering |
ISBN | 1681745658 |
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
Theory and Design of Acoustic Metamaterials
Title | Theory and Design of Acoustic Metamaterials PDF eBook |
Author | Perngjin Frank Pai |
Publisher | SPIE-International Society for Optical Engineering |
Pages | 0 |
Release | 2015 |
Genre | Acoustical materials |
ISBN | 9781628418354 |
Presents the most recent theoretical developments and numerical/experimental validations of new metamaterials and phononic crystals for the broadband absorption of elastic waves and vibrations in structures. Coverage includes sound absorption, extraordinary transmission, wave broadband mitigation, wave steering, cloaking via the transformation method, and active acoustic metamaterials.
Quantum Plasmonics
Title | Quantum Plasmonics PDF eBook |
Author | Sergey I. Bozhevolnyi |
Publisher | Springer |
Pages | 338 |
Release | 2016-11-26 |
Genre | Science |
ISBN | 3319458205 |
This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.