Gas Turbine Blade Cooling

Gas Turbine Blade Cooling
Title Gas Turbine Blade Cooling PDF eBook
Author Chaitanya D Ghodke
Publisher SAE International
Pages 238
Release 2018-12-10
Genre Technology & Engineering
ISBN 0768095026

Download Gas Turbine Blade Cooling Book in PDF, Epub and Kindle

Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Title Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF eBook
Author Je-Chin Han
Publisher CRC Press
Pages 892
Release 2012-11-27
Genre Science
ISBN 1439855684

Download Gas Turbine Heat Transfer and Cooling Technology, Second Edition Book in PDF, Epub and Kindle

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Heat Transfer in Gas Turbines

Heat Transfer in Gas Turbines
Title Heat Transfer in Gas Turbines PDF eBook
Author Bengt Sundén
Publisher Witpress
Pages 544
Release 2001
Genre Medical
ISBN

Download Heat Transfer in Gas Turbines Book in PDF, Epub and Kindle

This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage
Title Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage PDF eBook
Author Louis M. Russell
Publisher
Pages 30
Release 1997
Genre Flow visualization
ISBN

Download Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage Book in PDF, Epub and Kindle

An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45 000, 335 000, and 726 000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45 000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335 000 and 726 000 compared well with the more standard method of measuring pressures by using discrete holes.

Turbulent Flow and Heat Transfer in Turbine-blade Coolant Passages

Turbulent Flow and Heat Transfer in Turbine-blade Coolant Passages
Title Turbulent Flow and Heat Transfer in Turbine-blade Coolant Passages PDF eBook
Author Mark Andrew Stephens
Publisher
Pages
Release 1996
Genre Computational fluid dynamics
ISBN

Download Turbulent Flow and Heat Transfer in Turbine-blade Coolant Passages Book in PDF, Epub and Kindle

Develops and validates a computational fluid dynamics (CFD) framework that can be used to analyze the three-dimensional, turbulent, compressible, rotating fluid flow and associated heat transfer of an internal coolant passage with ribs as a function of the design and operating conditions of gas turbine systems. Uses this framework to study the flow field and associated heat transfer for a number of configurations and operating conditions.

NASA Technical Paper

NASA Technical Paper
Title NASA Technical Paper PDF eBook
Author
Publisher
Pages 38
Release 1984
Genre Science
ISBN

Download NASA Technical Paper Book in PDF, Epub and Kindle

Transport Phenomena In Thermal Control

Transport Phenomena In Thermal Control
Title Transport Phenomena In Thermal Control PDF eBook
Author Guang-Jyh Hwang
Publisher CRC Press
Pages 822
Release 1989-08-01
Genre Science
ISBN 9780891168881

Download Transport Phenomena In Thermal Control Book in PDF, Epub and Kindle

A collection of research papers into transport phenomena in thermal control, closely related to several important aspects of cooling technology. Articles provide overviews of current advances and details of individual technologies including electronic and turbine cooling and Marangoni convection.