Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition)

Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition)
Title Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition) PDF eBook
Author James K Freericks
Publisher World Scientific
Pages 451
Release 2016-03-15
Genre Science
ISBN 178326859X

Download Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition) Book in PDF, Epub and Kindle

Over the last 25 years, dynamical mean-field theory (DMFT) has emerged as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, this book presents the first comprehensive treatment of this ever-developing topic. Transport in Mutlilayered Nanostructures is varied and modern in its scope, and:A series of over 50 problems help develop the skills to allow readers to reach the level of being able to contribute to research. This book is suitable for an advanced graduate course in DMFT, and for individualized study by graduate students, postdoctoral fellows and advanced researchers wishing to enter the field.

Transport in Multilayered Nanostructures

Transport in Multilayered Nanostructures
Title Transport in Multilayered Nanostructures PDF eBook
Author James K. Freericks
Publisher
Pages 432
Release 2016
Genre TECHNOLOGY & ENGINEERING
ISBN 9781783268580

Download Transport in Multilayered Nanostructures Book in PDF, Epub and Kindle

"Over the last 25 years, dynamical mean-field theory (DMFT) has emerged as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, this book presents the first comprehensive treatment of this ever-developing topic. Transport in Mutlilayered Nanostructures is varied and modern in its scope, and: Develops the formalism of many-body Green's functions using the equation-of-motion approach Applies DMFT to study transport in multilayered nanostructures, which is likely to be one of the most prominent applications of nanotechnology in the coming years Develops formalism first for the bulk and then for the inhomogeneous multilayered systems Describes in great detail the science behind the metal-insulator transition, electronic charge reconstruction, strongly correlated contributions to capacitance, and superconductivity Includes complete derivations and emphasizes how to carry out numerical calculations, including discussions of parallel programming algorithms Provides descriptions of the crossover from tunneling to thermally activated transport, of the properties of Josephson junctions with barriers tuned near the metal-insulator transition of thermoelectric coolers and power generators and of nonequilibrium extensions to determine current-voltage characteristics as applications of the theory A series of over 40 problems help develop the skills to allow readers to reach the level of being able to contribute to research. This book is suitable for an advanced graduate course in DMFT, and for individualized study by graduate students, postdoctoral fellows and advanced researchers wishing to enter the field"--

Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach

Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach
Title Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach PDF eBook
Author James K Freericks
Publisher World Scientific
Pages 343
Release 2006-09-15
Genre Science
ISBN 1908979453

Download Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach Book in PDF, Epub and Kindle

This novel book is the first comprehensive text on dynamical mean-field theory (DMFT), which has emerged over the past two decades as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, the volume develops the formalism of many-body Green's functions using the equation of motion approach, which requires an undergraduate solid state physics course and a graduate quantum mechanics course as prerequisites. The DMFT is applied to study transport in multilayered nanostructures, which is likely to be one of the most prominent applications of nanotechnology in the coming years. The text is modern in scope focusing on exact numerical methods rather than the perturbation theory. Formalism is developed first for the bulk and then for the inhomogeneous multilayered systems. The science behind the metal-insulator transition, electronic charge reconstruction, and superconductivity are thoroughly described. The book covers complete derivations and emphasizes how to carry out numerical calculations, including discussions of parallel programing algorithms. Detailed descriptions of the crossover from tunneling to thermally activated transport, of the properties of Josephson junctions with barriers tuned near the metal-insulator transition, and of thermoelectric coolers and power generators are provided as applications of the theory./a

Dynamical Mean-Field Theory for Strongly Correlated Materials

Dynamical Mean-Field Theory for Strongly Correlated Materials
Title Dynamical Mean-Field Theory for Strongly Correlated Materials PDF eBook
Author Volodymyr Turkowski
Publisher Springer Nature
Pages 393
Release 2021-04-22
Genre Technology & Engineering
ISBN 3030649040

Download Dynamical Mean-Field Theory for Strongly Correlated Materials Book in PDF, Epub and Kindle

​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.

New Materials for Thermoelectric Applications: Theory and Experiment

New Materials for Thermoelectric Applications: Theory and Experiment
Title New Materials for Thermoelectric Applications: Theory and Experiment PDF eBook
Author Veljko Zlatic
Publisher Springer
Pages 283
Release 2012-10-17
Genre Science
ISBN 9400749848

Download New Materials for Thermoelectric Applications: Theory and Experiment Book in PDF, Epub and Kindle

Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

Interacting Electrons

Interacting Electrons
Title Interacting Electrons PDF eBook
Author Richard M. Martin
Publisher Cambridge University Press
Pages 843
Release 2016-06-30
Genre Science
ISBN 1316558568

Download Interacting Electrons Book in PDF, Epub and Kindle

Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

Oxide Materials at the Two-Dimensional Limit

Oxide Materials at the Two-Dimensional Limit
Title Oxide Materials at the Two-Dimensional Limit PDF eBook
Author Falko P. Netzer
Publisher Springer
Pages 403
Release 2016-04-01
Genre Technology & Engineering
ISBN 3319283324

Download Oxide Materials at the Two-Dimensional Limit Book in PDF, Epub and Kindle

This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.