Topological Recursion and its Influence in Analysis, Geometry, and Topology
Title | Topological Recursion and its Influence in Analysis, Geometry, and Topology PDF eBook |
Author | Chiu-Chu Melissa Liu |
Publisher | American Mathematical Soc. |
Pages | 578 |
Release | 2018-11-19 |
Genre | Mathematics |
ISBN | 1470435411 |
This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.
Frontiers in Geometry and Topology
Title | Frontiers in Geometry and Topology PDF eBook |
Author | Paul M. N. Feehan |
Publisher | American Mathematical Society |
Pages | 320 |
Release | 2024-07-19 |
Genre | Mathematics |
ISBN | 147047087X |
This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.
Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry
Title | Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry PDF eBook |
Author | Sergey Novikov |
Publisher | American Mathematical Soc. |
Pages | 480 |
Release | 2021-04-12 |
Genre | Education |
ISBN | 1470455927 |
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Representations of Reductive Groups
Title | Representations of Reductive Groups PDF eBook |
Author | Avraham Aizenbud |
Publisher | American Mathematical Soc. |
Pages | 466 |
Release | 2019-02-20 |
Genre | Mathematics |
ISBN | 1470442841 |
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.
Open Problems in Algebraic Combinatorics
Title | Open Problems in Algebraic Combinatorics PDF eBook |
Author | Christine Berkesch |
Publisher | American Mathematical Society |
Pages | 382 |
Release | 2024-08-21 |
Genre | Mathematics |
ISBN | 147047333X |
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
Categorical, Combinatorial and Geometric Representation Theory and Related Topics
Title | Categorical, Combinatorial and Geometric Representation Theory and Related Topics PDF eBook |
Author | Pramod N. Achar |
Publisher | American Mathematical Society |
Pages | 536 |
Release | 2024-07-11 |
Genre | Mathematics |
ISBN | 1470471175 |
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
Nine Mathematical Challenges: An Elucidation
Title | Nine Mathematical Challenges: An Elucidation PDF eBook |
Author | A. Kechris |
Publisher | American Mathematical Soc. |
Pages | 221 |
Release | 2021-09-24 |
Genre | Education |
ISBN | 1470454904 |
This volume stems from the Linde Hall Inaugural Math Symposium, held from February 22–24, 2019, at California Institute of Technology, Pasadena, California. The content isolates and discusses nine mathematical problems, or sets of problems, in a deep way, but starting from scratch. Included among them are the well-known problems of the classification of finite groups, the Navier-Stokes equations, the Birch and Swinnerton-Dyer conjecture, and the continuum hypothesis. The other five problems, also of substantial importance, concern the Lieb–Thirring inequalities, the equidistribution problems in number theory, surface bundles, ramification in covers and curves, and the gap and type problems in Fourier analysis. The problems are explained succinctly, with a discussion of what is known and an elucidation of the outstanding issues. An attempt is made to appeal to a wide audience, both in terms of the field of expertise and the level of the reader.