Topics in Theoretical and Computational Nanoscience

Topics in Theoretical and Computational Nanoscience
Title Topics in Theoretical and Computational Nanoscience PDF eBook
Author Jeffrey Michael McMahon
Publisher Springer Science & Business Media
Pages 204
Release 2011-06-24
Genre Science
ISBN 1441982493

Download Topics in Theoretical and Computational Nanoscience Book in PDF, Epub and Kindle

Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes. This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: · At the single nanoparticle level, how well do experimental and classical electrodynamics agree? · What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment? · Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this? · Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects? · Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?

Computational Nanoscience

Computational Nanoscience
Title Computational Nanoscience PDF eBook
Author Elena Bichoutskaia
Publisher Royal Society of Chemistry
Pages 445
Release 2011-06-09
Genre Science
ISBN 184973268X

Download Computational Nanoscience Book in PDF, Epub and Kindle

Nanoscience is one of the most exciting areas of modern physical science as it encompasses a range of techniques rather than a single discipline. It stretches across the whole spectrum of science including: medicine and health, physics, engineering and chemistry. Providing a deep understanding of the behaviour of matter at the scale of individual atoms and molecules, it provides a crucial step towards future applications of nanotechnology. The remarkable improvements in both theoretical methods and computational techniques make it possible for modern computational nanoscience to achieve a new level of chemical accuracy. It is now a discipline capable of leading and guiding experimental efforts rather than just following others. Computational Nanoscience addresses modern challenges in computational science, within the context of the rapidly evolving field of nanotechnology. It satisfies the need for a comprehensive, yet concise and up-to-date, survey of new developments and applications presented by the world's leading academics. It documents major, recent advances in scientific computation, mathematical models and theory development that specifically target the applications in nanotechnology. Suitable for theoreticians, researchers and students, the book shows readers what computational nanoscience can achieve, and how it may be applied in their own work. The twelve chapters cover topics including the concepts behind recent breakthroughs, the development of cutting edge simulation tools, and the variety of new applications.

Topics in Theoretical and Computational Nanoscience

Topics in Theoretical and Computational Nanoscience
Title Topics in Theoretical and Computational Nanoscience PDF eBook
Author Jeffrey Michael McMahon
Publisher
Pages 216
Release 2011-07-31
Genre
ISBN 9781441982506

Download Topics in Theoretical and Computational Nanoscience Book in PDF, Epub and Kindle

Handbook of Theoretical and Computational Nanotechnology: Quantum and molecular computing, quantum simulations

Handbook of Theoretical and Computational Nanotechnology: Quantum and molecular computing, quantum simulations
Title Handbook of Theoretical and Computational Nanotechnology: Quantum and molecular computing, quantum simulations PDF eBook
Author Michael Rieth
Publisher
Pages 724
Release 2006
Genre Nanoscience
ISBN 9781588830456

Download Handbook of Theoretical and Computational Nanotechnology: Quantum and molecular computing, quantum simulations Book in PDF, Epub and Kindle

Handbook of Theoretical and Computational Nanotechnology

Handbook of Theoretical and Computational Nanotechnology
Title Handbook of Theoretical and Computational Nanotechnology PDF eBook
Author Michael Rieth
Publisher
Pages
Release 2006
Genre Nanoscience
ISBN 9781588830425

Download Handbook of Theoretical and Computational Nanotechnology Book in PDF, Epub and Kindle

Topics In Nanoscience (In 2 Parts)

Topics In Nanoscience (In 2 Parts)
Title Topics In Nanoscience (In 2 Parts) PDF eBook
Author Wolfram Schommers
Publisher World Scientific
Pages 872
Release 2021-12-17
Genre Science
ISBN 9811256136

Download Topics In Nanoscience (In 2 Parts) Book in PDF, Epub and Kindle

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Computational Nanoscience

Computational Nanoscience
Title Computational Nanoscience PDF eBook
Author Kálmán Varga
Publisher Cambridge University Press
Pages 445
Release 2011-04-14
Genre Science
ISBN 1139501054

Download Computational Nanoscience Book in PDF, Epub and Kindle

Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.