Topics from the Theory of Numbers
Title | Topics from the Theory of Numbers PDF eBook |
Author | Emil Grosswald |
Publisher | Springer Science & Business Media |
Pages | 336 |
Release | 2010-02-23 |
Genre | Mathematics |
ISBN | 0817648380 |
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.
Topics in Number Theory
Title | Topics in Number Theory PDF eBook |
Author | Amir Hossein Parvardi |
Publisher | |
Pages | 426 |
Release | 2018-09-11 |
Genre | |
ISBN | 9781719920315 |
This challenging book contains fundamentals of elementary number theory as well as a huge number of solved problems and exercises. The authors, who are experienced mathematical olympiad teachers, have used numerous solved problems and examples in the process of presenting the theory. Another point which has made this book self-contained is that the authors have explained everything from the very beginning, so that the reader does not need to use other sources for definitions, theorems, or problems. On the other hand, Topics in Number Theory introduces and develops advanced subjects in number theory which may not be found in other similar number theory books; for instance, chapter 5 presents Thue's lemma, Vietta jumping, and lifting the exponent lemma (among other things) which are unique in the sense that no other book covers all such topics in one place. As a result, this book is suitable for both beginners and advanced-level students in olympiad number theory, math teachers, and in general whoever is interested in learning number theory.For more information about the book, please refer to https://TopicsInNumberTheory.com.
Topics in the Theory of Numbers
Title | Topics in the Theory of Numbers PDF eBook |
Author | Janos Suranyi |
Publisher | Springer Science & Business Media |
Pages | 322 |
Release | 2003-01-14 |
Genre | Mathematics |
ISBN | 9780387953205 |
Number theory, the branch of mathematics that studies the properties of the integers, is a repository of interesting and quite varied problems, sometimes impossibly difficult ones. In this book, the authors have gathered together a collection of problems from various topics in number theory that they find beautiful, intriguing, and from a certain point of view instructive.
Advanced Topics in Computational Number Theory
Title | Advanced Topics in Computational Number Theory PDF eBook |
Author | Henri Cohen |
Publisher | Springer Science & Business Media |
Pages | 591 |
Release | 2012-10-29 |
Genre | Mathematics |
ISBN | 1441984895 |
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
Topics in Analytic Number Theory
Title | Topics in Analytic Number Theory PDF eBook |
Author | Hans Rademacher |
Publisher | Springer Science & Business Media |
Pages | 333 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642806155 |
At the time of Professor Rademacher's death early in 1969, there was available a complete manuscript of the present work. The editors had only to supply a few bibliographical references and to correct a few misprints and errors. No substantive changes were made in the manu script except in one or two places where references to additional material appeared; since this material was not found in Rademacher's papers, these references were deleted. The editors are grateful to Springer-Verlag for their helpfulness and courtesy. Rademacher started work on the present volume no later than 1944; he was still working on it at the inception of his final illness. It represents the parts of analytic number theory that were of greatest interest to him. The editors, his students, offer this work as homage to the memory of a great man to whom they, in common with all number theorists, owe a deep and lasting debt. E. Grosswald Temple University, Philadelphia, PA 19122, U.S.A. J. Lehner University of Pittsburgh, Pittsburgh, PA 15213 and National Bureau of Standards, Washington, DC 20234, U.S.A. M. Newman National Bureau of Standards, Washington, DC 20234, U.S.A. Contents I. Analytic tools Chapter 1. Bernoulli polynomials and Bernoulli numbers ....... . 1 1. The binomial coefficients ..................................... . 1 2. The Bernoulli polynomials .................................... . 4 3. Zeros of the Bernoulli polynomials ............................. . 7 4. The Bernoulli numbers ....................................... . 9 5. The von Staudt-Clausen theorem .............................. . 10 6. A multiplication formula for the Bernoulli polynomials ........... .
Topics in Multiplicative Number Theory
Title | Topics in Multiplicative Number Theory PDF eBook |
Author | Hugh L. Montgomery |
Publisher | Springer |
Pages | 187 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 354036935X |
A Course in Number Theory
Title | A Course in Number Theory PDF eBook |
Author | H. E. Rose |
Publisher | Oxford University Press |
Pages | 420 |
Release | 1995 |
Genre | Mathematics |
ISBN | 9780198523765 |
This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.