Theoretical and Numerical Combustion

Theoretical and Numerical Combustion
Title Theoretical and Numerical Combustion PDF eBook
Author Thierry Poinsot
Publisher R.T. Edwards, Inc.
Pages 544
Release 2005
Genre Science
ISBN 9781930217102

Download Theoretical and Numerical Combustion Book in PDF, Epub and Kindle

Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Combustion Physics

Combustion Physics
Title Combustion Physics PDF eBook
Author Chung K. Law
Publisher Cambridge University Press
Pages 5
Release 2010-08-23
Genre Technology & Engineering
ISBN 1139459244

Download Combustion Physics Book in PDF, Epub and Kindle

This graduate-level text incorporates these advances in a comprehensive treatment of the fundamental principles of combustion physics. The presentation emphasises analytical proficiency and physical insight, with the former achieved through complete, though abbreviated, derivations at different levels of rigor, and the latter through physical interpretations of analytical solutions, experimental observations, and computational simulations. Exercises are mostly derivative in nature in order to further strengthen the student's mastery of the theory. Implications of the fundamental knowledge gained herein on practical phenomena are discussed whenever appropriate. These distinguishing features provide a solid foundation for an academic program in combustion science and engineering.

Turbulent Combustion

Turbulent Combustion
Title Turbulent Combustion PDF eBook
Author Norbert Peters
Publisher Cambridge University Press
Pages 322
Release 2000-08-15
Genre Science
ISBN 1139428063

Download Turbulent Combustion Book in PDF, Epub and Kindle

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Principles of Combustion

Principles of Combustion
Title Principles of Combustion PDF eBook
Author Allan T. Kirkpatrick
Publisher John Wiley & Sons
Pages 596
Release 2024-11-27
Genre Science
ISBN 1394187068

Download Principles of Combustion Book in PDF, Epub and Kindle

The new edition of a classic textbook on combustion principles and processes, covering the latest developments in fuels and applications in a student-friendly format Principles of Combustion provides clear and authoritative coverage of chemically reacting flow systems. Detailed and accessible chapters cover key combustion topics such as chemical kinetics, reaction mechanisms, laminar flames, droplet evaporation and burning, and turbulent reacting flows. Numerous figures, end-of-chapter problems, extensive reference materials, and examples of specific combustion applications are integrated throughout the text. Newly revised and expanded, Principles of Combustion makes it easier for students to absorb and master each concept covered by presenting content through smaller, bite-sized chapters. Two entirely new chapters on turbulent reacting flows and solid fuel combustion are accompanied by additional coverage of low carbon fuels such as hydrogen, natural gas, and renewable fuels. This new edition contains a wealth of new homework problems, new application examples, up-to-date references, and access to a new companion website with MATLAB files that students can use to run different combustion cases. Fully updated to meet the needs of today's students and instructors, Principles of Combustion Provides problem-solving techniques that draw from thermodynamics, fluid mechanics, and chemistry Addresses contemporary topics such as zero carbon combustion, turbulent combustion, and sustainable fuels Discusses the role of combustion emissions in climate change and the need for reducing reliance on carbon-based fossil fuels Covers a wide range of combustion application areas, including internal combustion engines, industrial heating, and materials processing Containing both introductory and advanced material on various combustion topics, Principles of Combustion, Third Edition, is an essential textbook for upper-level undergraduate and graduate courses on combustion, combustion theory, and combustion processes. It is also a valuable reference for combustion engineers and scientists wanting to better understand a particular combustion problem.

Turbulent Combustion Modeling

Turbulent Combustion Modeling
Title Turbulent Combustion Modeling PDF eBook
Author Tarek Echekki
Publisher Springer Science & Business Media
Pages 496
Release 2010-12-25
Genre Technology & Engineering
ISBN 9400704127

Download Turbulent Combustion Modeling Book in PDF, Epub and Kindle

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion
Title Data Analysis for Direct Numerical Simulations of Turbulent Combustion PDF eBook
Author Heinz Pitsch
Publisher Springer Nature
Pages 294
Release 2020-05-28
Genre Mathematics
ISBN 3030447189

Download Data Analysis for Direct Numerical Simulations of Turbulent Combustion Book in PDF, Epub and Kindle

This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.

Radiative Heat Transfer in Turbulent Combustion Systems

Radiative Heat Transfer in Turbulent Combustion Systems
Title Radiative Heat Transfer in Turbulent Combustion Systems PDF eBook
Author Michael F. Modest
Publisher Springer
Pages 167
Release 2016-01-06
Genre Science
ISBN 3319272918

Download Radiative Heat Transfer in Turbulent Combustion Systems Book in PDF, Epub and Kindle

This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.