The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series

The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series
Title The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series PDF eBook
Author Ken Ono
Publisher American Mathematical Soc.
Pages 226
Release 2004
Genre Mathematics
ISBN 0821833685

Download The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-series Book in PDF, Epub and Kindle

Chapter 1.

The web of modularity

The web of modularity
Title The web of modularity PDF eBook
Author Ken Ono
Publisher
Pages 216
Release 2004
Genre
ISBN 9780821833681

Download The web of modularity Book in PDF, Epub and Kindle

A First Course in Modular Forms

A First Course in Modular Forms
Title A First Course in Modular Forms PDF eBook
Author Fred Diamond
Publisher Springer Science & Business Media
Pages 462
Release 2006-03-30
Genre Mathematics
ISBN 0387272267

Download A First Course in Modular Forms Book in PDF, Epub and Kindle

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

Computational Aspects of Modular Forms and Galois Representations

Computational Aspects of Modular Forms and Galois Representations
Title Computational Aspects of Modular Forms and Galois Representations PDF eBook
Author Bas Edixhoven
Publisher Princeton University Press
Pages 438
Release 2011-05-31
Genre Mathematics
ISBN 1400839009

Download Computational Aspects of Modular Forms and Galois Representations Book in PDF, Epub and Kindle

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.

Modular Forms: A Classical And Computational Introduction (2nd Edition)

Modular Forms: A Classical And Computational Introduction (2nd Edition)
Title Modular Forms: A Classical And Computational Introduction (2nd Edition) PDF eBook
Author Lloyd James Peter Kilford
Publisher World Scientific Publishing Company
Pages 252
Release 2015-03-12
Genre Mathematics
ISBN 1783265477

Download Modular Forms: A Classical And Computational Introduction (2nd Edition) Book in PDF, Epub and Kindle

Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.

Modular Forms

Modular Forms
Title Modular Forms PDF eBook
Author Henri Cohen
Publisher American Mathematical Soc.
Pages 714
Release 2017-08-02
Genre Mathematics
ISBN 0821849476

Download Modular Forms Book in PDF, Epub and Kindle

The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and “fun” subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms. Some “gems” of the book are an immediately implementable trace formula for Hecke operators, generalizations of Haberland's formulas for the computation of Petersson inner products, W. Li's little-known theorem on the diagonalization of the full space of modular forms, and explicit algorithms due to the second author for computing Maass forms. This book is essentially self-contained, the necessary tools such as gamma and Bessel functions, Bernoulli numbers, and so on being given in a separate chapter.

Modular Forms

Modular Forms
Title Modular Forms PDF eBook
Author Claudia Alfes-Neumann
Publisher Springer Nature
Pages 44
Release 2021-10-11
Genre Mathematics
ISBN 3658345292

Download Modular Forms Book in PDF, Epub and Kindle

In this essential, Claudia Alfes-Neumann discusses applications of the theory of modular forms and their importance as fundamental tools in mathematics. These functions - initially defined purely analytically - appear in many areas of mathematics: very prominently in number theory, but also in geometry, combinatorics, representation theory, and physics. After explaining necessary basics from complex analysis, the author defines modular forms and shows some applications in number theory. Furthermore, she takes up two important aspects of the theory surrounding modular forms: Hecke operators and L-functions of modular forms. The essentials conclude with an outlook on real-analytic generalizations of modular forms, which play an important role in current research. This Springer essential is a translation of the original German 1st edition essentials, Modulformen by Claudia Alfes-Neumann, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.