The Theory of Hardy's Z-Function

The Theory of Hardy's Z-Function
Title The Theory of Hardy's Z-Function PDF eBook
Author A. Ivić
Publisher Cambridge University Press
Pages 265
Release 2013
Genre Mathematics
ISBN 1107028833

Download The Theory of Hardy's Z-Function Book in PDF, Epub and Kindle

A comprehensive account of Hardy's Z-function, one of the most important functions of analytic number theory.

Value-Distribution of L-Functions

Value-Distribution of L-Functions
Title Value-Distribution of L-Functions PDF eBook
Author Jörn Steuding
Publisher Springer
Pages 320
Release 2007-05-26
Genre Mathematics
ISBN 3540448225

Download Value-Distribution of L-Functions Book in PDF, Epub and Kindle

These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.

The Riemann Zeta-Function

The Riemann Zeta-Function
Title The Riemann Zeta-Function PDF eBook
Author Anatoly A. Karatsuba
Publisher Walter de Gruyter
Pages 409
Release 2011-05-03
Genre Mathematics
ISBN 3110886146

Download The Riemann Zeta-Function Book in PDF, Epub and Kindle

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Exploring the Riemann Zeta Function

Exploring the Riemann Zeta Function
Title Exploring the Riemann Zeta Function PDF eBook
Author Hugh Montgomery
Publisher Springer
Pages 300
Release 2017-09-11
Genre Mathematics
ISBN 3319599690

Download Exploring the Riemann Zeta Function Book in PDF, Epub and Kindle

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.

Riemann's Zeta Function

Riemann's Zeta Function
Title Riemann's Zeta Function PDF eBook
Author Harold M. Edwards
Publisher Courier Corporation
Pages 338
Release 2001-01-01
Genre Mathematics
ISBN 9780486417400

Download Riemann's Zeta Function Book in PDF, Epub and Kindle

Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.

Lectures on the Riemann Zeta Function

Lectures on the Riemann Zeta Function
Title Lectures on the Riemann Zeta Function PDF eBook
Author H. Iwaniec
Publisher American Mathematical Society
Pages 130
Release 2014-10-07
Genre Mathematics
ISBN 1470418517

Download Lectures on the Riemann Zeta Function Book in PDF, Epub and Kindle

The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics. The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. There are also technical lemmas which can be useful in a broader context.

Contributions to the Theory of Zeta-Functions

Contributions to the Theory of Zeta-Functions
Title Contributions to the Theory of Zeta-Functions PDF eBook
Author Shigeru Kanemitsu
Publisher World Scientific
Pages 316
Release 2014-12-15
Genre Mathematics
ISBN 9814449628

Download Contributions to the Theory of Zeta-Functions Book in PDF, Epub and Kindle

This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions. This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.