The Shortest-Path Problem
Title | The Shortest-Path Problem PDF eBook |
Author | Hector Ortega-Arranz |
Publisher | Morgan & Claypool Publishers |
Pages | 89 |
Release | 2014-12-01 |
Genre | Computers |
ISBN | 1627055401 |
Many applications in different domains need to calculate the shortest-path between two points in a graph. In this paper we describe this shortest path problem in detail, starting with the classic Dijkstra's algorithm and moving to more advanced solutions that are currently applied to road network routing, including the use of heuristics and precomputation techniques. Since several of these improvements involve subtle changes to the search space, it may be difficult to appreciate their benefits in terms of time or space requirements. To make methods more comprehensive and to facilitate their comparison, this book presents a single case study that serves as a common benchmark. The paper also compares the search spaces explored by the methods described, both from a quantitative and qualitative point of view, and including an analysis of the number of reached and settled nodes by different methods for a particular topology.
The Shortest Path Problem
Title | The Shortest Path Problem PDF eBook |
Author | Camil Demetrescu |
Publisher | American Mathematical Soc. |
Pages | 337 |
Release | |
Genre | Mathematics |
ISBN | 0821885863 |
Faster Algorithms for the Shortest Path Problem
Title | Faster Algorithms for the Shortest Path Problem PDF eBook |
Author | Sloan School of Management |
Publisher | Franklin Classics |
Pages | 46 |
Release | 2018-10-15 |
Genre | |
ISBN | 9780343204747 |
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Shortest Path Solvers. From Software to Wetware
Title | Shortest Path Solvers. From Software to Wetware PDF eBook |
Author | Andrew Adamatzky |
Publisher | Springer |
Pages | 442 |
Release | 2018-04-26 |
Genre | Technology & Engineering |
ISBN | 3319775103 |
This book offers advanced parallel and distributed algorithms and experimental laboratory prototypes of unconventional shortest path solvers. In addition, it presents novel and unique algorithms of solving shortest problems in massively parallel cellular automaton machines. The shortest path problem is a fundamental and classical problem in graph theory and computer science and is frequently applied in the contexts of transport and logistics, telecommunication networks, virtual reality and gaming, geometry, and social networks analysis. Software implementations include distance-vector algorithms for distributed path computation in dynamics networks, parallel solutions of the constrained shortest path problem, and application of the shortest path solutions in gathering robotic swarms. Massively parallel algorithms utilise cellular automata, where a shortest path is computed either via matrix multiplication in automaton arrays, or via the representation of data graphs in automaton lattices and using the propagation of wave-like patterns. Unconventional shortest path solvers are presented in computer models of foraging behaviour and protoplasmic network optimisation by the slime mould Physarum polycephalum and fluidic devices, while experimental laboratory prototypes of path solvers using chemical media, flows and droplets, and electrical current are also highlighted. The book will be a pleasure to explore for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computers scientists and engineers to chemists and biologists.
Euclidean Shortest Paths
Title | Euclidean Shortest Paths PDF eBook |
Author | Fajie Li |
Publisher | Springer Science & Business Media |
Pages | 377 |
Release | 2011-11-03 |
Genre | Computers |
ISBN | 1447122569 |
This unique text/reference reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. Discussing each concept and algorithm in depth, the book includes mathematical proofs for many of the given statements. Topics and features: provides theoretical and programming exercises at the end of each chapter; presents a thorough introduction to shortest paths in Euclidean geometry, and the class of algorithms called rubberband algorithms; discusses algorithms for calculating exact or approximate ESPs in the plane; examines the shortest paths on 3D surfaces, in simple polyhedrons and in cube-curves; describes the application of rubberband algorithms for solving art gallery problems, including the safari, zookeeper, watchman, and touring polygons route problems; includes lists of symbols and abbreviations, in addition to other appendices.
Column Generation
Title | Column Generation PDF eBook |
Author | Guy Desaulniers |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2006-03-20 |
Genre | Business & Economics |
ISBN | 0387254862 |
Column Generation is an insightful overview of the state of the art in integer programming column generation and its many applications. The volume begins with "A Primer in Column Generation" which outlines the theory and ideas necessary to solve large-scale practical problems, illustrated with a variety of examples. Other chapters follow this introduction on "Shortest Path Problems with Resource Constraints," "Vehicle Routing Problem with Time Window," "Branch-and-Price Heuristics," "Cutting Stock Problems," each dealing with methodological aspects of the field. Three chapters deal with transportation applications: "Large-scale Models in the Airline Industry," "Robust Inventory Ship Routing by Column Generation," and "Ship Scheduling with Recurring Visits and Visit Separation Requirements." Production is the focus of another three chapters: "Combining Column Generation and Lagrangian Relaxation," "Dantzig-Wolfe Decomposition for Job Shop Scheduling," and "Applying Column Generation to Machine Scheduling." The final chapter by François Vanderbeck, "Implementing Mixed Integer Column Generation," reviews how to set-up the Dantzig-Wolfe reformulation, adapt standard MIP techniques to the column generation context (branching, preprocessing, primal heuristics), and deal with specific column generation issues (initialization, stabilization, column management strategies).
Graph Algorithms
Title | Graph Algorithms PDF eBook |
Author | Mark Needham |
Publisher | "O'Reilly Media, Inc." |
Pages | 297 |
Release | 2019-05-16 |
Genre | Computers |
ISBN | 1492047635 |
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark