The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles
Title The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles PDF eBook
Author John H. Cushman
Publisher Springer Science & Business Media
Pages 480
Release 2013-04-17
Genre Science
ISBN 940158849X

Download The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles Book in PDF, Epub and Kindle

Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles
Title The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles PDF eBook
Author John H. Cushman
Publisher Springer
Pages 469
Release 2014-03-14
Genre Science
ISBN 9789401588508

Download The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles Book in PDF, Epub and Kindle

Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.

Gas Transport in Porous Media

Gas Transport in Porous Media
Title Gas Transport in Porous Media PDF eBook
Author Clifford K. Ho
Publisher Springer Science & Business Media
Pages 442
Release 2006-10-07
Genre Science
ISBN 140203962X

Download Gas Transport in Porous Media Book in PDF, Epub and Kindle

CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.

Modeling Transport Phenomena in Porous Media with Applications

Modeling Transport Phenomena in Porous Media with Applications
Title Modeling Transport Phenomena in Porous Media with Applications PDF eBook
Author Malay K. Das
Publisher Springer
Pages 250
Release 2017-11-21
Genre Technology & Engineering
ISBN 3319698664

Download Modeling Transport Phenomena in Porous Media with Applications Book in PDF, Epub and Kindle

This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

The Physics of Composite and Porous Media

The Physics of Composite and Porous Media
Title The Physics of Composite and Porous Media PDF eBook
Author T. J. T. (Tim) Spanos
Publisher CRC Press
Pages 286
Release 2017-11-06
Genre Science
ISBN 1498746721

Download The Physics of Composite and Porous Media Book in PDF, Epub and Kindle

Building on the success of T.J.T. Spanos's previous book The Thermophysics of Porous Media, The Physics of Composite and Porous Media explains non-linear field theory that describes how physical processes occur in the earth. It describes physical processes associated with the interaction of the various phases at the macroscale (the scale at which continuum equations are established) and how these interactions give rise to additional physical processes at the megascale (the scale orders of magnitude larger at which a continuum description may once again be established). Details are also given on how experimental, numerical and theoretical work on this subject fits together. This book will be of interest to graduate students and academic researchers working on understanding the physical process in the earth, in addition to those working in the oil and hydrogeology industries.

Handbook of Porous Media

Handbook of Porous Media
Title Handbook of Porous Media PDF eBook
Author Kambiz Vafai
Publisher CRC Press
Pages 946
Release 2015-06-23
Genre Science
ISBN 1439885575

Download Handbook of Porous Media Book in PDF, Epub and Kindle

Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i

The Thermophysics of Porous Media

The Thermophysics of Porous Media
Title The Thermophysics of Porous Media PDF eBook
Author T.J.T. Spanos
Publisher CRC Press
Pages 233
Release 2001-11-28
Genre Mathematics
ISBN 1420026127

Download The Thermophysics of Porous Media Book in PDF, Epub and Kindle

Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involv