The Monster and Lie Algebras
Title | The Monster and Lie Algebras PDF eBook |
Author | Joseph Ferrar |
Publisher | Walter de Gruyter |
Pages | 265 |
Release | 2011-06-24 |
Genre | Mathematics |
ISBN | 3110801892 |
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
Vertex Operator Algebras and the Monster
Title | Vertex Operator Algebras and the Monster PDF eBook |
Author | Igor Frenkel |
Publisher | Academic Press |
Pages | 563 |
Release | 1989-05-01 |
Genre | Mathematics |
ISBN | 0080874541 |
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Introduction to Finite and Infinite Dimensional Lie (Super)algebras
Title | Introduction to Finite and Infinite Dimensional Lie (Super)algebras PDF eBook |
Author | Neelacanta Sthanumoorthy |
Publisher | Academic Press |
Pages | 514 |
Release | 2016-04-26 |
Genre | Mathematics |
ISBN | 012804683X |
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras
Lie Algebras of Finite and Affine Type
Title | Lie Algebras of Finite and Affine Type PDF eBook |
Author | Roger William Carter |
Publisher | Cambridge University Press |
Pages | 662 |
Release | 2005-10-27 |
Genre | Mathematics |
ISBN | 9780521851381 |
This book provides a thorough but relaxed mathematical treatment of Lie algebras.
Moonshine beyond the Monster
Title | Moonshine beyond the Monster PDF eBook |
Author | Terry Gannon |
Publisher | Cambridge University Press |
Pages | 422 |
Release | 2006-09-07 |
Genre | Science |
ISBN | 1139457802 |
This book was originally published in 2006. Moonshine forms a way of explaining the mysterious connection between the monster finite group and modular functions from classical number theory. The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras. Moonshine Beyond the Monster describes the general theory of Moonshine and its underlying concepts, emphasising the interconnections between mathematics and mathematical physics. Written in a clear and pedagogical style, this book is ideal for graduate students and researchers working in areas such as conformal field theory, string theory, algebra, number theory, geometry and functional analysis. Containing over a hundred exercises, it is also a suitable textbook for graduate courses on Moonshine and as supplementary reading for courses on conformal field theory and string theory.
Lie Groups, Physics, and Geometry
Title | Lie Groups, Physics, and Geometry PDF eBook |
Author | Robert Gilmore |
Publisher | Cambridge University Press |
Pages | 5 |
Release | 2008-01-17 |
Genre | Science |
ISBN | 113946907X |
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Introduction to Lie Algebras
Title | Introduction to Lie Algebras PDF eBook |
Author | K. Erdmann |
Publisher | Springer Science & Business Media |
Pages | 254 |
Release | 2006-09-28 |
Genre | Mathematics |
ISBN | 1846284902 |
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.