Matrix Iterative Analysis
Title | Matrix Iterative Analysis PDF eBook |
Author | Richard S Varga |
Publisher | Springer Science & Business Media |
Pages | 363 |
Release | 2009-12-05 |
Genre | Mathematics |
ISBN | 3642051561 |
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Matrix Iterative Analysis
Title | Matrix Iterative Analysis PDF eBook |
Author | Richard S. Varga |
Publisher | Springer Science & Business Media |
Pages | 362 |
Release | 2009-12-21 |
Genre | Mathematics |
ISBN | 3642051545 |
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Iterative Methods for Sparse Linear Systems
Title | Iterative Methods for Sparse Linear Systems PDF eBook |
Author | Yousef Saad |
Publisher | SIAM |
Pages | 537 |
Release | 2003-04-01 |
Genre | Mathematics |
ISBN | 0898715342 |
Mathematics of Computing -- General.
Applied Iterative Methods
Title | Applied Iterative Methods PDF eBook |
Author | Louis A. Hageman |
Publisher | Elsevier |
Pages | 409 |
Release | 2014-06-28 |
Genre | Mathematics |
ISBN | 1483294374 |
Applied Iterative Methods
Linear Algebra and Matrix Analysis for Statistics
Title | Linear Algebra and Matrix Analysis for Statistics PDF eBook |
Author | Sudipto Banerjee |
Publisher | CRC Press |
Pages | 586 |
Release | 2014-06-06 |
Genre | Mathematics |
ISBN | 1420095382 |
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Matrix Analysis and Computations
Title | Matrix Analysis and Computations PDF eBook |
Author | Zhong-Zhi Bai |
Publisher | SIAM |
Pages | 496 |
Release | 2021-09-09 |
Genre | Mathematics |
ISBN | 1611976634 |
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics
Iterative Solution of Large Linear Systems
Title | Iterative Solution of Large Linear Systems PDF eBook |
Author | David M. Young |
Publisher | Elsevier |
Pages | 599 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483274136 |
Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.