The Lebesgue Integral for Undergraduates

The Lebesgue Integral for Undergraduates
Title The Lebesgue Integral for Undergraduates PDF eBook
Author William Johnston
Publisher The Mathematical Association of America
Pages 297
Release 2015-09-25
Genre Mathematics
ISBN 1939512077

Download The Lebesgue Integral for Undergraduates Book in PDF, Epub and Kindle

In 1902, modern function theory began when Henri Lebesgue described a new "integral calculus." His "Lebesgue integral" handles more functions than the traditional integral-so many more that mathematicians can study collections (spaces) of functions. For example, it defines a distance between any two functions in a space. This book describes these ideas in an elementary accessible way. Anyone who has mastered calculus concepts of limits, derivatives, and series can enjoy the material. Unlike any other text, this book brings analysis research topics within reach of readers even just beginning to think about functions from a theoretical point of view.

A Primer of Lebesgue Integration

A Primer of Lebesgue Integration
Title A Primer of Lebesgue Integration PDF eBook
Author H. S. Bear
Publisher Academic Press
Pages 184
Release 2002
Genre Mathematics
ISBN 9780120839711

Download A Primer of Lebesgue Integration Book in PDF, Epub and Kindle

The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.

Lebesgue Integration

Lebesgue Integration
Title Lebesgue Integration PDF eBook
Author Soo B. Chae
Publisher Springer Science & Business Media
Pages 275
Release 2012-12-06
Genre Mathematics
ISBN 1461207819

Download Lebesgue Integration Book in PDF, Epub and Kindle

Responses from colleagues and students concerning the first edition indicate that the text still answers a pedagogical need which is not addressed by other texts. There are no major changes in this edition. Several proofs have been tightened, and the exposition has been modified in minor ways for improved clarity. As before, the strength of the text lies in presenting the student with the difficulties which led to the development of the theory and, whenever possi ble, giving the student the tools to overcome those difficulties for himself or herself. Another proverb: Give me a fish, I eat for a day. Teach me to fish, I eat for a lifetime. Soo Bong Chae March 1994 Preface to the First Edition This book was developed from lectures in a course at New College and should be accessible to advanced undergraduate and beginning graduate students. The prerequisites are an understanding of introductory calculus and the ability to comprehend "e-I) arguments. " The study of abstract measure and integration theory has been in vogue for more than two decades in American universities since the publication of Measure Theory by P. R. Halmos (1950). There are, however, very few ele mentary texts from which the interested reader with a calculus background can learn the underlying theory in a form that immediately lends itself to an understanding of the subject. This book is meant to be on a level between calculus and abstract integration theory for students of mathematics and physics.

Lebesgue Integral

Lebesgue Integral
Title Lebesgue Integral PDF eBook
Author Liviu C. Florescu
Publisher Springer Nature
Pages 215
Release 2021-02-25
Genre Mathematics
ISBN 3030601633

Download Lebesgue Integral Book in PDF, Epub and Kindle

This book presents a compact and self-contained introduction to the theory of measure and integration. The introduction into this theory is as necessary (because of its multiple applications) as difficult for the uninitiated. Most measure theory treaties involve a large amount of prerequisites and present crucial theoretical challenges. By taking on another approach, this textbook provides less experienced readers with material that allows an easy access to the definition and main properties of the Lebesgue integral. The book will be welcomed by upper undergraduate/early graduate students who wish to better understand certain concepts and results of probability theory, statistics, economic equilibrium theory, game theory, etc., where the Lebesgue integral makes its presence felt throughout. The book can also be useful to students in the faculties of mathematics, physics, computer science, engineering, life sciences, as an introduction to a more in-depth study of measure theory.

An Introduction to Lebesgue Integration and Fourier Series

An Introduction to Lebesgue Integration and Fourier Series
Title An Introduction to Lebesgue Integration and Fourier Series PDF eBook
Author Howard J. Wilcox
Publisher Courier Corporation
Pages 194
Release 2012-04-30
Genre Mathematics
ISBN 0486137473

Download An Introduction to Lebesgue Integration and Fourier Series Book in PDF, Epub and Kindle

This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.

Lebesgue Integration on Euclidean Space

Lebesgue Integration on Euclidean Space
Title Lebesgue Integration on Euclidean Space PDF eBook
Author Frank Jones
Publisher Jones & Bartlett Learning
Pages 626
Release 2001
Genre Computers
ISBN 9780763717087

Download Lebesgue Integration on Euclidean Space Book in PDF, Epub and Kindle

"'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --

Lectures on Functional Analysis and the Lebesgue Integral

Lectures on Functional Analysis and the Lebesgue Integral
Title Lectures on Functional Analysis and the Lebesgue Integral PDF eBook
Author Vilmos Komornik
Publisher Springer
Pages 417
Release 2016-06-03
Genre Mathematics
ISBN 1447168119

Download Lectures on Functional Analysis and the Lebesgue Integral Book in PDF, Epub and Kindle

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.