The Inverse Problem of Scattering Theory
Title | The Inverse Problem of Scattering Theory PDF eBook |
Author | Z.S. Agranovich |
Publisher | Courier Dover Publications |
Pages | 307 |
Release | 2020-05-21 |
Genre | Mathematics |
ISBN | 0486842495 |
This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.
Inverse Acoustic and Electromagnetic Scattering Theory
Title | Inverse Acoustic and Electromagnetic Scattering Theory PDF eBook |
Author | David Colton |
Publisher | Springer Science & Business Media |
Pages | 316 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 3662028352 |
It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.
An Introduction to Inverse Scattering and Inverse Spectral Problems
Title | An Introduction to Inverse Scattering and Inverse Spectral Problems PDF eBook |
Author | Khosrow Chadan |
Publisher | SIAM |
Pages | 206 |
Release | 1997-01-01 |
Genre | Mathematics |
ISBN | 0898713870 |
Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.
Inverse Spectral and Scattering Theory
Title | Inverse Spectral and Scattering Theory PDF eBook |
Author | Hiroshi Isozaki |
Publisher | Springer Nature |
Pages | 130 |
Release | 2020-09-26 |
Genre | Science |
ISBN | 9811581991 |
The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.
An Introduction to the Mathematical Theory of Inverse Problems
Title | An Introduction to the Mathematical Theory of Inverse Problems PDF eBook |
Author | Andreas Kirsch |
Publisher | Springer Science & Business Media |
Pages | 314 |
Release | 2011-03-24 |
Genre | Mathematics |
ISBN | 1441984747 |
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.
Direct and Inverse Scattering for the Matrix Schrödinger Equation
Title | Direct and Inverse Scattering for the Matrix Schrödinger Equation PDF eBook |
Author | Tuncay Aktosun |
Publisher | Springer Nature |
Pages | 631 |
Release | 2020-05-19 |
Genre | Mathematics |
ISBN | 3030384314 |
Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.
Inverse Scattering Theory and Transmission Eigenvalues
Title | Inverse Scattering Theory and Transmission Eigenvalues PDF eBook |
Author | Fioralba Cakoni |
Publisher | SIAM |
Pages | 200 |
Release | 2016-10-28 |
Genre | Mathematics |
ISBN | 1611974461 |
Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance.? Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues.? The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.?