The Hamiltonian Hopf Bifurcation
Title | The Hamiltonian Hopf Bifurcation PDF eBook |
Author | Jan Cornelis van der Meer |
Publisher | Springer |
Pages | 121 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540397108 |
The Hamiltonian Hopf Bifurcation
Title | The Hamiltonian Hopf Bifurcation PDF eBook |
Author | Jan-Cees van der Meer |
Publisher | |
Pages | 25 |
Release | 1983 |
Genre | |
ISBN |
Metamorphoses of Hamiltonian Systems with Symmetries
Title | Metamorphoses of Hamiltonian Systems with Symmetries PDF eBook |
Author | Konstantinos Efstathiou |
Publisher | Springer |
Pages | 155 |
Release | 2005-01-28 |
Genre | Science |
ISBN | 3540315500 |
Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.
Elements of Applied Bifurcation Theory
Title | Elements of Applied Bifurcation Theory PDF eBook |
Author | Yuri Kuznetsov |
Publisher | Springer Science & Business Media |
Pages | 648 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
The Hopf Bifurcation and Its Applications
Title | The Hopf Bifurcation and Its Applications PDF eBook |
Author | J. E. Marsden |
Publisher | Springer Science & Business Media |
Pages | 420 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461263743 |
The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.
Elements of Differentiable Dynamics and Bifurcation Theory
Title | Elements of Differentiable Dynamics and Bifurcation Theory PDF eBook |
Author | David Ruelle |
Publisher | Elsevier |
Pages | 196 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483272184 |
Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.
Metamorphoses of Hamiltonian Systems with Symmetries
Title | Metamorphoses of Hamiltonian Systems with Symmetries PDF eBook |
Author | Konstantinos Efstathiou |
Publisher | Springer Science & Business Media |
Pages | 164 |
Release | 2005 |
Genre | Hamiltonian systems |
ISBN | 9783540243168 |