The Geometry of Syzygies
Title | The Geometry of Syzygies PDF eBook |
Author | David Eisenbud |
Publisher | Springer Science & Business Media |
Pages | 254 |
Release | 2006-10-28 |
Genre | Mathematics |
ISBN | 0387264566 |
First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.
Syzygies and Homotopy Theory
Title | Syzygies and Homotopy Theory PDF eBook |
Author | F.E.A. Johnson |
Publisher | Springer Science & Business Media |
Pages | 307 |
Release | 2011-11-17 |
Genre | Mathematics |
ISBN | 1447122941 |
The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ́F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.
Cohomology of Vector Bundles and Syzygies
Title | Cohomology of Vector Bundles and Syzygies PDF eBook |
Author | Jerzy Weyman |
Publisher | Cambridge University Press |
Pages | 404 |
Release | 2003-06-09 |
Genre | Mathematics |
ISBN | 9780521621977 |
The central theme of this book is an exposition of the geometric technique of calculating syzygies. It is written from a point of view of commutative algebra, and without assuming any knowledge of representation theory the calculation of syzygies of determinantal varieties is explained. The starting point is a definition of Schur functors, and these are discussed from both an algebraic and geometric point of view. Then a chapter on various versions of Bott's Theorem leads on to a careful explanation of the technique itself, based on a description of the direct image of a Koszul complex. Applications to determinantal varieties follow, plus there are also chapters on applications of the technique to rank varieties for symmetric and skew symmetric tensors of arbitrary degree, closures of conjugacy classes of nilpotent matrices, discriminants and resultants. Numerous exercises are included to give the reader insight into how to apply this important method.
Syzygies and Hilbert Functions
Title | Syzygies and Hilbert Functions PDF eBook |
Author | Irena Peeva |
Publisher | CRC Press |
Pages | 305 |
Release | 2007-03-20 |
Genre | Mathematics |
ISBN | 1420050915 |
Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.
The Geometry of Syzygies
Title | The Geometry of Syzygies PDF eBook |
Author | David Eisenbud |
Publisher | Springer Science & Business Media |
Pages | 253 |
Release | 2005 |
Genre | Mathematics |
ISBN | 0387222154 |
First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.
Commutative Algebra
Title | Commutative Algebra PDF eBook |
Author | David Eisenbud |
Publisher | Springer Science & Business Media |
Pages | 784 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461253500 |
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Frobenius Splitting Methods in Geometry and Representation Theory
Title | Frobenius Splitting Methods in Geometry and Representation Theory PDF eBook |
Author | Michel Brion |
Publisher | Springer Science & Business Media |
Pages | 259 |
Release | 2007-08-08 |
Genre | Mathematics |
ISBN | 0817644059 |
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.