The Future of Soil Carbon
Title | The Future of Soil Carbon PDF eBook |
Author | Carlos Garcia |
Publisher | Academic Press |
Pages | 290 |
Release | 2018-04-10 |
Genre | Science |
ISBN | 0128116889 |
The Future of Soil Carbon: Its Conservation and Formation provides readers with an integrative approach to understanding the important role of organic carbon in soil functioning and fertility. Terrestrial interactions between SOC and complex human-natural systems require new fundamental and applied research into regional and global SOC budgets. This book provides new and synthesized information on the dynamics of SOC in the terrestrial environment. In addition to rigorous state-of-the art on soil science, the book also provides strategies to avoid risks of soil carbon losses. Soil organic carbon (SOC) is a vital component of soils, with important and far-reaching effects on the functioning of terrestrial ecosystems. Human activities over the last several decades have significantly changed the regional and global balance of SOC, greatly exacerbating global warming and climate change. - Provides a holistic overview of soil carbon status and main threats for its conservation - Offers innovative solutions to conserve soil carbon - Includes in-depth treatment of regional and global changes in soil organic carbon budget
Soil Organic Carbon and Feeding the Future
Title | Soil Organic Carbon and Feeding the Future PDF eBook |
Author | Rattan Lal |
Publisher | CRC Press |
Pages | 338 |
Release | 2021-12-30 |
Genre | Science |
ISBN | 1000512916 |
Soil organic matter (SOM) is a highly reactive constituent of the soil matrix because of its large surface area, high ion exchange capacity, enormous affinity for water due to hygroscopicity, and capacity to form organo-mineral complexes. It is an important source and sink of atmospheric CO2 and other greenhouse gases depending on climate, land use, soil and crop management, and a wide range of abiotic and biotic factors, including the human dimensions of socioeconomic and political factors. Agroecosystems are among important controls of the global carbon cycle with a strong impact on anthropogenic or abrupt climate change. This volume of Advances in Soil Sciences explains pedological processes set-in-motion by increases in SOM content of depleted and degraded soils. It discusses the relationship between SOM content and critical soil quality parameters including aggregation, water retention and transport, aeration and gaseous exchange, and chemical composition of soil air. The book identifies policy options needed to translate science into action for making sustainable management of SOM as a strategy for adaptation to and mitigation of climate change. Features: Relates soil organic matter stock to soil processes, climate parameters, vegetation, landscape attributes Establishes relationships between soil organic matter and land use, species, and climate Identifies land use systems for protecting and restoring soil organic matter stock Links soil organic matter stock with the global carbon cycle for mitigation of climate change Part of the Advances in Soil Sciences series, this volume will appeal to agricultural, environmental, and soil scientists demonstrating the link between soil organic matter stock and provisioning of critical ecosystem services for nature and humans.
Soil Carbon Storage
Title | Soil Carbon Storage PDF eBook |
Author | Brajesh Singh |
Publisher | Academic Press |
Pages | 341 |
Release | 2018-04-12 |
Genre | Science |
ISBN | 0128127678 |
Soil Carbon Storage: Modulators, Mechanisms and Modeling takes a novel approach to the issue of soil carbon storage by considering soil C sequestration as a function of the interaction between biotic (e.g. microbes and plants) and abiotic (climate, soil types, management practices) modulators as a key driver of soil C. These modulators are central to C balance through their processing of C from both plant inputs and native soil organic matter. This book considers this concept in the light of state-of-the-art methodologies that elucidate these interactions and increase our understanding of a vitally important, but poorly characterized component of the global C cycle. The book provides soil scientists with a comprehensive, mechanistic, quantitative and predictive understanding of soil carbon storage. It presents a new framework that can be included in predictive models and management practices for better prediction and enhanced C storage in soils. - Identifies management practices to enhance storage of soil C under different agro-ecosystems, soil types and climatic conditions - Provides novel conceptual frameworks of biotic (especially microbial) and abiotic data to improve prediction of simulation model at plot to global scale - Advances the conceptual framework needed to support robust predictive models and sustainable land management practices
Soil Organic Matter and Feeding the Future
Title | Soil Organic Matter and Feeding the Future PDF eBook |
Author | Rattan Lal |
Publisher | CRC Press |
Pages | 428 |
Release | 2021-12-09 |
Genre | Science |
ISBN | 1000483916 |
Soil organic matter (SOM) is the primary determinant of soil functionality. Soil organic carbon (SOC) accounts for 50% of the SOM content, accompanied by nitrogen, phosphorus, and a range of macro and micro elements. As a dynamic component, SOM is a source of numerous ecosystem services critical to human well-being and nature conservancy. Important among these goods and services generated by SOM include moderation of climate as a source or sink of atmospheric CO2 and other greenhouse gases, storage and purification of water, a source of energy and habitat for biota (macro, meso, and micro-organisms), a medium for plant growth, cycling of elements (N, P, S, etc.), and generation of net primary productivity (NPP). The quality and quantity of NPP has direct impacts on the food and nutritional security of the growing and increasingly affluent human population. Soils of agroecosystems are depleted of their SOC reserves in comparison with those of natural ecosystems. The magnitude of depletion depends on land use and the type and severity of degradation. Soils prone to accelerated erosion can be strongly depleted of their SOC reserves, especially those in the surface layer. Therefore, conservation through restorative land use and adoption of recommended management practices to create a positive soil-ecosystem carbon budget can increase carbon stock and soil health. This volume of Advances in Soil Sciences aims to accomplish the following: Present impacts of land use and soil management on SOC dynamics Discuss effects of SOC levels on agronomic productivity and use efficiency of inputs Detail potential of soil management on the rate and cumulative amount of carbon sequestration in relation to land use and soil/crop management Deliberate the cause-effect relationship between SOC content and provisioning of some ecosystem services Relate soil organic carbon stock to soil properties and processes Establish the relationship between soil organic carbon stock with land and climate Identify controls of making soil organic carbon stock as a source or sink of CO2 Connect soil organic carbon and carbon sequestration for climate mitigation and adaptation
Soil Carbon Dynamics
Title | Soil Carbon Dynamics PDF eBook |
Author | Werner L. Kutsch |
Publisher | Cambridge University Press |
Pages | 301 |
Release | 2010-01-07 |
Genre | Technology & Engineering |
ISBN | 1139483161 |
Carbon stored in soils represents the largest terrestrial carbon pool and factors affecting this will be vital in the understanding of future atmospheric CO2 concentrations. This book provides an integrated view on measuring and modeling soil carbon dynamics. Based on a broad range of in-depth contributions by leading scientists it gives an overview of current research concepts, developments and outlooks and introduces cutting-edge methodologies, ranging from questions of appropriate measurement design to the potential application of stable isotopes and molecular tools. It includes a standardised soil CO2 efflux protocol, aimed at data consistency and inter-site comparability and thus underpins a regional and global understanding of soil carbon dynamics. This book provides an important reference work for students and scientists interested in many aspects of soil ecology and biogeochemical cycles, policy makers, carbon traders and others concerned with the global carbon cycle.
Soil Carbon
Title | Soil Carbon PDF eBook |
Author | Alfred E. Hartemink |
Publisher | Springer Science & Business Media |
Pages | 503 |
Release | 2014-04-01 |
Genre | Nature |
ISBN | 3319040847 |
Few topics cut across the soil science discipline wider than research on soil carbon. This book contains 48 chapters that focus on novel and exciting aspects of soil carbon research from all over the world. It includes review papers by global leaders in soil carbon research, and the book ends with a list and discussion of global soil carbon research priorities. Chapters are loosely grouped in four sections: § Soil carbon in space and time § Soil carbon properties and processes § Soil use and carbon management § Soil carbon and the environment A wide variety of topics is included: soil carbon modelling, measurement, monitoring, microbial dynamics, soil carbon management and 12 chapters focus on national or regional soil carbon stock assessments. The book provides up-to-date information for researchers interested in soil carbon in relation to climate change and to researchers that are interested in soil carbon for the maintenance of soil quality and fertility. Papers in this book were presented at the IUSS Global Soil C Conference that was held at the University of Wisconsin-Madison, USA.
Farming for Our Future
Title | Farming for Our Future PDF eBook |
Author | PETER H.. ROSENBERG LEHNER (NATHAN A.) |
Publisher | |
Pages | 272 |
Release | 2021-12-07 |
Genre | |
ISBN | 9781585762378 |
Farming for Our Future examines the policies and legal reforms necessary to accelerate the adoption of practices that can make agriculture in the United States climate-neutral or better. These proven practices will also make our food system more resilient to the impacts of climate change. Agriculture's contribution to climate change is substantial--much more so than official figures suggest--and we will not be able to achieve our overall mitigation goals unless agricultural emissions sharply decline. Fortunately, farms and ranches can be a major part of the climate solution, while protecting biodiversity, strengthening rural communities, and improving the lives of the workers who cultivate our crops and rear our animals. The importance of agricultural climate solutions can not be underestimated; it is a critical element both in ensuring our food security and limiting climate change. This book provides essential solutions to address the greatest crises of our time.