Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations

Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations
Title Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations PDF eBook
Author Maria Colombo
Publisher Springer
Pages 285
Release 2017-06-07
Genre Mathematics
ISBN 8876426078

Download Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations Book in PDF, Epub and Kindle

The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.​

Nonlinear Conservation Laws and Applications

Nonlinear Conservation Laws and Applications
Title Nonlinear Conservation Laws and Applications PDF eBook
Author Alberto Bressan
Publisher Springer Science & Business Media
Pages 487
Release 2011-04-19
Genre Mathematics
ISBN 1441995544

Download Nonlinear Conservation Laws and Applications Book in PDF, Epub and Kindle

This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.

Parabolic Equations with Irregular Data and Related Issues

Parabolic Equations with Irregular Data and Related Issues
Title Parabolic Equations with Irregular Data and Related Issues PDF eBook
Author Claude Le Bris
Publisher Walter de Gruyter GmbH & Co KG
Pages 158
Release 2019-06-17
Genre Mathematics
ISBN 311063550X

Download Parabolic Equations with Irregular Data and Related Issues Book in PDF, Epub and Kindle

This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations
Title Handbook of Differential Equations: Evolutionary Equations PDF eBook
Author C.M. Dafermos
Publisher Elsevier
Pages 653
Release 2011-09-22
Genre Mathematics
ISBN 008046565X

Download Handbook of Differential Equations: Evolutionary Equations Book in PDF, Epub and Kindle

The material collected in this volume reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear parabolic PDE's.Articles will highlight the present as well as expected future directions of development of the field with particular emphasis on applications. The article by Ambrosio and Savaré discussesthe most recent development in the theory of gradient flow of probability measures. After an introduction reviewing the properties of the Wasserstein space and corresponding subdifferential calculus, applications are given to evolutionarypartial differential equations. The contribution of Herrero provides a description of some mathematical approaches developed to account for quantitative as well as qualitative aspects of chemotaxis. Particular attention is paid to the limits of cell'scapability to measure external cues on the one hand, and to provide an overall description of aggregation models for the slim mold Dictyostelium discoideum on the other.The chapter written by Masmoudi deals with a rather different topic - examples of singular limits in hydrodynamics. This is nowadays a well-studied issue given the amount of new results based on the development of the existence theory for rather general systems of equations in hydrodynamics. The paper by DeLellis addreses the most recent results for the transport equations with regard to possible applications in the theory of hyperbolic systems of conservation laws. Emphasis is put on the development of the theory in the case when the governing field is only a BV function.The chapter by Rein represents a comprehensive survey of results on the Poisson-Vlasov system in astrophysics. The question of global stability of steady states is addressed in detail. The contribution of Soner is devoted to different representations of non-linear parabolic equations in terms of Markov processes. After a brief introduction on the linear theory, a class ofnon-linear equations is investigated, with applications to stochastic control and differential games.The chapter written by Zuazua presents some of the recent progresses done on the problem of controllabilty of partial differential equations. The applications include the linear wave and heat equations,parabolic equations with coefficients of low regularity, and some fluid-structure interaction models.- Volume 1 focuses on the abstract theory of evolution- Volume 2 considers more concrete probelms relating to specific applications- Volume 3 reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear PDEs

Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications
Title Hyperbolic Problems: Theory, Numerics, Applications PDF eBook
Author Sylvie Benzoni-Gavage
Publisher Springer Science & Business Media
Pages 1117
Release 2008-01-12
Genre Mathematics
ISBN 3540757120

Download Hyperbolic Problems: Theory, Numerics, Applications Book in PDF, Epub and Kindle

This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.

Differentiable Measures and the Malliavin Calculus

Differentiable Measures and the Malliavin Calculus
Title Differentiable Measures and the Malliavin Calculus PDF eBook
Author Vladimir Igorevich Bogachev
Publisher American Mathematical Soc.
Pages 506
Release 2010-07-21
Genre Mathematics
ISBN 082184993X

Download Differentiable Measures and the Malliavin Calculus Book in PDF, Epub and Kindle

This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.

Random Perturbation of PDEs and Fluid Dynamic Models

Random Perturbation of PDEs and Fluid Dynamic Models
Title Random Perturbation of PDEs and Fluid Dynamic Models PDF eBook
Author Franco Flandoli
Publisher Springer
Pages 187
Release 2011-03-02
Genre Mathematics
ISBN 3642182313

Download Random Perturbation of PDEs and Fluid Dynamic Models Book in PDF, Epub and Kindle

The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.