The Dynamic Architecture of a Developing Organism
Title | The Dynamic Architecture of a Developing Organism PDF eBook |
Author | L.V. Beloussov |
Publisher | Springer Science & Business Media |
Pages | 243 |
Release | 2013-04-18 |
Genre | Science |
ISBN | 9401589984 |
For anybody capable of an emotional response to it, any view of a developing organism should give birth to a feeling of amazement and even admiration, whether this development is seen directly, or in the form of a time lapse film, or even if mentally reconstructed from a series of static images. We ask ourselves how such seemingly primitive eggs or pieces of tissue, without any obvious intervention from outside, so regularly transform themselves into precisely constructed adult organisms. If we try to formulate what amazes us most of all about development, the answer will probably be that it is the internal capacity of developing organisms themselves to create new structures. How, then, can we satisfy our amazement in ways that are more or less reasonable, as well as scientifically valuable? This depends, first of all, on what position we choose to regard embryonic development as occupying among other structure creating processes, even including human activities. On the one hand, one might regard the development of organisms as a highly specialized class of processes, unique to themselves and alien to the general laws of nature, or at least not derivable from them and more akin to the deliberate acts of our own human behaviour. In that case our task would become reduced to a search for some specific 'instructions' for each next member of such a class. Whether in an overt or hidden form, some such ideology seems to dominate in present day developmental biology.
Evolutionary Systems Biology
Title | Evolutionary Systems Biology PDF eBook |
Author | Anton Crombach |
Publisher | Springer Nature |
Pages | 299 |
Release | 2021-08-05 |
Genre | Science |
ISBN | 3030717372 |
This new edition captures the advances made in the field of evolutionary systems biology since the publication of the first edition. The first edition focused on laying the foundations of evolutionary systems biology as an interdisciplinary field, where a way of thinking and asking questions is combined with a wide variety of tools, both experimental and theoretical/computational. Since publication of the first edition, evolutionary systems biology is now a well-known term describing this growing field. The new edition provides an overview of the current status and future developments of this interdisciplinary field. Chapters highlight several key achievements from the last decade and outline exciting new developments, including an understanding of the interplay between complexity and predictability in evolutionary systems, new viewpoints and methods to study organisms in evolving populations at the level of the genome, gene regulatory network, and metabolic network, and better analysis and modeling techniques that will open new avenues of scientific inquiry.
Morphomechanics of Development
Title | Morphomechanics of Development PDF eBook |
Author | Lev V. Beloussov |
Publisher | Springer |
Pages | 206 |
Release | 2014-12-27 |
Genre | Science |
ISBN | 3319139908 |
This book outlines a unified theory of embryonic development, assuming morphogenesis to be a multi-level process including self-organizing steps while also obeying general laws. It is shown how molecular mechanisms generate mechanical forces, which in the long run lead to morphological changes. Questions such as how stress-mediated feedback acts at the cellular and supra-cellular levels and how executive and regulatory mechanisms are mutually dependent are addressed, while aspects of collective cell behavior and the morphogenesis of plants are also discussed. The morphomechanical approach employed in the book is based on the general principles of self-organization theory.
Towards a Theory of Development
Title | Towards a Theory of Development PDF eBook |
Author | Alessandro Minelli |
Publisher | OUP Oxford |
Pages | 522 |
Release | 2014-05-01 |
Genre | Science |
ISBN | 0191651184 |
Is it possible to explain and predict the development of living things? What is development? Articulate answers to these seemingly innocuous questions are far from straightforward. To date, no systematic, targeted effort has been made to construct a unifying theory of development. This novel work offers a unique exploration of the foundations of ontogeny by asking how the development of living things should be understood. It explores the key concepts of developmental biology, asks whether general principles of development can be discovered, and examines the role of models and theories. The two editors (one a biologist with long interest in the theoretical aspects of his discipline, the other a philosopher of science who has mainly worked on biological systems) have assembled a team of leading contributors who are representative of the scientific and philosophical community within which a diversity of thoughts are growing, and out of which a theory of development may eventually emerge. They analyse a wealth of approaches to concepts, models and theories of development, such as gene regulatory networks, accounts based on systems biology and on physics of soft matter, the different articulations of evolution and development, symbiont-induced development, as well as the widely discussed concepts of positional information and morphogenetic field, the idea of a 'programme' of development and its critiques, and the long-standing opposition between preformationist and epigenetic conceptions of development. Towards a Theory of Development is primarily aimed at students and researchers in the fields of 'evo-devo', developmental biology, theoretical biology, systems biology, biophysics, and the philosophy of science.
Analysis of Cardiac Development
Title | Analysis of Cardiac Development PDF eBook |
Author | Rafael Beyar |
Publisher | John Wiley & Sons |
Pages | 241 |
Release | 2010-03-22 |
Genre | Science |
ISBN | 1573317470 |
This volume, the result of three days of interactive sessions among world leaders in the cardiac sciences, summarizes the most up-to-date information about development and cardiogenesis signaling in cell-based therapy, as well as developmental aspects of the formation of the embryonic heart, including the effect of mechanical load on differentiation. Other topics covered include: signaling and repair strategies, cell and gene therapy for the treatment of postmyocardial infarction, signaling, vascularization methods in engineering embryonic cardiac tissue, and molecular methods to improve survival of human embryonic stem cell–derived cardiomyocytes; developmental and evolutional cardiology; novel strategies for treatment of atrial fibrillation and channel molecular physiology in remodeling and hypertrophy; multiscale modeling for metabolism and flows, including force development, mechanics of cardiac contraction, and ATP supply and demand aspects; aging, interactions, and interference aspects include fibroblast-myocyte-capillary communications, nonuniformities in contraction, calcium channels as oxygen sensors, and epigenetics of heart failure; and macroscale phenomena and clinical aspects, including various clinical aspects of modern cardiology such as navigation methods for cardiac interventions and control of cardiac function by changes in energetic demand. NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit www.blackwellpublishing.com/nyas. ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order (www.nyas.org). Members of the New York Academy of Science receive full-text access to the Annals online and discounts on print volumes. Please visit http://www.nyas.org/MemberCenter/Join.aspx for more information about becoming a member.
Embryogenesis Explained
Title | Embryogenesis Explained PDF eBook |
Author | Natalie K Gordon |
Publisher | World Scientific |
Pages | 784 |
Release | 2016-09-15 |
Genre | Science |
ISBN | 9814740691 |
The greatest mystery of life is how a single fertilized egg develops into a fully functioning, sometimes conscious multicellular organism. Embryogenesis Explained offers a new theory of how embryos build themselves, and combines simple physics with the most recent biochemical and genetic breakthroughs, based on the authors' prediction and then discovery of differentiation waves. They explain their ideas in a form accessible to the lay person and a broad spectrum of scientists and engineers. The diverse subjects of development, genetics and evolution, and their physics, are brought together to explain this major, previously unanswered scientific question of our time.As a follow up on The Hierarchical Genome, this book is a shorter but conceptually expanded work for the reader who is interested in science. It is useful as a starting point for the curious layman or the scientist or professional encountering the problem of embryogenesis without the formal biology background. There is also material useful for the seasoned biologist caught up in the new rush of information about the role of mechanics in developmental biology and cellular level mechanics in medicine.
Biological Physics of the Developing Embryo
Title | Biological Physics of the Developing Embryo PDF eBook |
Author | Gabor Forgacs |
Publisher | Cambridge University Press |
Pages | 354 |
Release | 2005-11-24 |
Genre | Science |
ISBN | 9781139447317 |
During development cells and tissues undergo changes in pattern and form that employ a wider range of physical mechanisms than at any other time in an organism's life. This book shows how physics can be used to analyze these biological phenomena. Written to be accessible to both biologists and physicists, major stages and components of the biological development process are introduced and then analyzed from the viewpoint of physics. The presentation of physical models requires no mathematics beyond basic calculus. Physical concepts introduced include diffusion, viscosity and elasticity, adhesion, dynamical systems, electrical potential, percolation, fractals, reaction-diffusion systems, and cellular automata. With full-color figures throughout, this comprehensive textbook teaches biophysics by application to developmental biology and is suitable for graduate and upper-undergraduate courses in physics and biology.