The Calculus of Braids

The Calculus of Braids
Title The Calculus of Braids PDF eBook
Author Patrick Dehornoy
Publisher Cambridge University Press
Pages 259
Release 2021-09-09
Genre Mathematics
ISBN 1108843948

Download The Calculus of Braids Book in PDF, Epub and Kindle

This introduction to braid groups keeps prerequisites to a minimum, while discussing their rich mathematical properties and applications.

Knots, Links, Braids and 3-Manifolds

Knots, Links, Braids and 3-Manifolds
Title Knots, Links, Braids and 3-Manifolds PDF eBook
Author Viktor Vasilʹevich Prasolov
Publisher American Mathematical Soc.
Pages 250
Release 1997
Genre Mathematics
ISBN 0821808982

Download Knots, Links, Braids and 3-Manifolds Book in PDF, Epub and Kindle

This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.

Braids, Links, and Mapping Class Groups

Braids, Links, and Mapping Class Groups
Title Braids, Links, and Mapping Class Groups PDF eBook
Author Joan S. Birman
Publisher Princeton University Press
Pages 244
Release 1974
Genre Crafts & Hobbies
ISBN 9780691081496

Download Braids, Links, and Mapping Class Groups Book in PDF, Epub and Kindle

The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.

Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman

Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman
Title Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman PDF eBook
Author Jane Gilman
Publisher American Mathematical Soc.
Pages 200
Release 2001
Genre Mathematics
ISBN 0821829661

Download Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman Book in PDF, Epub and Kindle

There are a number of specialties in low-dimensional topology that can find in their ``family tree'' a common ancestry in the theory of surface mappings. These include knot theory as studied through the use of braid representations, and 3-manifolds as studied through the use of Heegaard splittings. The study of the surface mapping class group (the modular group) is of course a rich subject in its own right, with relations to many different fields of mathematics and theoreticalphysics. However, its most direct and remarkable manifestation is probably in the vast area of low-dimensional topology. Although the scene of this area has been changed dramatically and experienced significant expansion since the original publication of Professor Joan Birman's seminal work,Braids, Links,and Mapping Class Groups(Princeton University Press), she brought together mathematicians whose research span many specialties, all of common lineage. The topics covered are quite diverse. Yet they reflect well the aim and spirit of the conference: to explore how these various specialties in low-dimensional topology have diverged in the past 20-25 years, as well as to explore common threads and potential future directions of development. This volume is dedicated to Joan Birman by hercolleagues with deep admiration and appreciation of her contribution to low-dimensional topology.

Knots 90

Knots 90
Title Knots 90 PDF eBook
Author Akio Kawauchi
Publisher Walter de Gruyter GmbH & Co KG
Pages 652
Release 2014-07-24
Genre Mathematics
ISBN 3110875918

Download Knots 90 Book in PDF, Epub and Kindle

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Title Encyclopaedia of Mathematics PDF eBook
Author M. Hazewinkel
Publisher Springer
Pages 927
Release 2013-12-01
Genre Mathematics
ISBN 1489937978

Download Encyclopaedia of Mathematics Book in PDF, Epub and Kindle

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Title Encyclopaedia of Mathematics PDF eBook
Author Michiel Hazewinkel
Publisher Springer Science & Business Media
Pages 496
Release 2012-12-06
Genre Mathematics
ISBN 9401512396

Download Encyclopaedia of Mathematics Book in PDF, Epub and Kindle

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathema tics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclo paedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reason ably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of pre cise theorems with detailed definitions and technical details on how to carry out proofs and con structions.