Rosenbrock—Wanner–Type Methods

Rosenbrock—Wanner–Type Methods
Title Rosenbrock—Wanner–Type Methods PDF eBook
Author Tim Jax
Publisher Springer Nature
Pages 125
Release 2021-07-24
Genre Mathematics
ISBN 3030768104

Download Rosenbrock—Wanner–Type Methods Book in PDF, Epub and Kindle

This book discusses the development of the Rosenbrock—Wanner methods from the origins of the idea to current research with the stable and efficient numerical solution and differential-algebraic systems of equations, still in focus. The reader gets a comprehensive insight into the classical methods as well as into the development and properties of novel W-methods, two-step and exponential Rosenbrock methods. In addition, descriptive applications from the fields of water and hydrogen network simulation and visual computing are presented.

Progress in Differential-Algebraic Equations II

Progress in Differential-Algebraic Equations II
Title Progress in Differential-Algebraic Equations II PDF eBook
Author Timo Reis
Publisher Springer Nature
Pages 486
Release 2020-10-10
Genre Mathematics
ISBN 3030539059

Download Progress in Differential-Algebraic Equations II Book in PDF, Epub and Kindle

This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.

The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods

The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods
Title The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods PDF eBook
Author Ernst Hairer
Publisher Springer
Pages 146
Release 2006-11-14
Genre Mathematics
ISBN 3540468323

Download The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods Book in PDF, Epub and Kindle

The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.

Optimal Control of ODEs and DAEs

Optimal Control of ODEs and DAEs
Title Optimal Control of ODEs and DAEs PDF eBook
Author Matthias Gerdts
Publisher Walter de Gruyter
Pages 469
Release 2011-12-23
Genre Mathematics
ISBN 3110249995

Download Optimal Control of ODEs and DAEs Book in PDF, Epub and Kindle

The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. The book addresses primarily master and PhD students as well as researchers in applied mathematics, but also engineers or scientists with a good background in mathematics and interest in optimal control. The theoretical parts of the book require some knowledge of functional analysis, the numerically oriented parts require knowledge from linear algebra and numerical analysis. Examples are provided for illustration purposes.

Solving Differential Equations in R

Solving Differential Equations in R
Title Solving Differential Equations in R PDF eBook
Author Karline Soetaert
Publisher Springer Science & Business Media
Pages 258
Release 2012-06-06
Genre Computers
ISBN 3642280706

Download Solving Differential Equations in R Book in PDF, Epub and Kindle

Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II
Title Solving Ordinary Differential Equations II PDF eBook
Author Ernst Hairer
Publisher Springer Science & Business Media
Pages 662
Release 1993
Genre Mathematics
ISBN 9783540604525

Download Solving Ordinary Differential Equations II Book in PDF, Epub and Kindle

The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY

Introduction to Numerical Analysis

Introduction to Numerical Analysis
Title Introduction to Numerical Analysis PDF eBook
Author J. Stoer
Publisher Springer Science & Business Media
Pages 760
Release 2013-03-09
Genre Mathematics
ISBN 038721738X

Download Introduction to Numerical Analysis Book in PDF, Epub and Kindle

New edition of a well-known classic in the field; Previous edition sold over 6000 copies worldwide; Fully-worked examples; Many carefully selected problems