Teichmüller Theory in Riemannian Geometry

Teichmüller Theory in Riemannian Geometry
Title Teichmüller Theory in Riemannian Geometry PDF eBook
Author Anthony Tromba
Publisher Birkhauser
Pages 234
Release 1992
Genre Mathematics
ISBN

Download Teichmüller Theory in Riemannian Geometry Book in PDF, Epub and Kindle

Teichmüller Theory in Riemannian Geometry

Teichmüller Theory in Riemannian Geometry
Title Teichmüller Theory in Riemannian Geometry PDF eBook
Author Anthony Tromba
Publisher Birkhäuser
Pages 224
Release 2012-12-06
Genre Mathematics
ISBN 3034886136

Download Teichmüller Theory in Riemannian Geometry Book in PDF, Epub and Kindle

These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.

Handbook of Teichmüller Theory

Handbook of Teichmüller Theory
Title Handbook of Teichmüller Theory PDF eBook
Author Athanase Papadopoulos
Publisher European Mathematical Society
Pages 888
Release 2007
Genre Mathematics
ISBN 9783037190555

Download Handbook of Teichmüller Theory Book in PDF, Epub and Kindle

This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.

Compact Riemann Surfaces

Compact Riemann Surfaces
Title Compact Riemann Surfaces PDF eBook
Author Jürgen Jost
Publisher Springer Science & Business Media
Pages 293
Release 2006-12-13
Genre Mathematics
ISBN 3540330674

Download Compact Riemann Surfaces Book in PDF, Epub and Kindle

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces
Title Moduli Spaces of Riemann Surfaces PDF eBook
Author Benson Farb
Publisher American Mathematical Soc.
Pages 371
Release 2013-08-16
Genre Mathematics
ISBN 0821898876

Download Moduli Spaces of Riemann Surfaces Book in PDF, Epub and Kindle

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces
Title Geometry and Spectra of Compact Riemann Surfaces PDF eBook
Author Peter Buser
Publisher Springer Science & Business Media
Pages 473
Release 2010-10-29
Genre Mathematics
ISBN 0817649921

Download Geometry and Spectra of Compact Riemann Surfaces Book in PDF, Epub and Kindle

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

An Introduction to Teichmüller Spaces

An Introduction to Teichmüller Spaces
Title An Introduction to Teichmüller Spaces PDF eBook
Author Yoichi Imayoshi
Publisher Springer Science & Business Media
Pages 291
Release 2012-12-06
Genre Mathematics
ISBN 4431681744

Download An Introduction to Teichmüller Spaces Book in PDF, Epub and Kindle

This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.