Surface Guided Radiation Therapy
Title | Surface Guided Radiation Therapy PDF eBook |
Author | Jeremy David Page Hoisak |
Publisher | CRC Press |
Pages | 515 |
Release | 2020-02-13 |
Genre | Medical |
ISBN | 0429951809 |
Surface Guided Radiation Therapy provides a comprehensive overview of optical surface image guidance systems for radiation therapy. It serves as an introductory teaching resource for students and trainees, and a valuable reference for medical physicists, physicians, radiation therapists, and administrators who wish to incorporate surface guided radiation therapy (SGRT) into their clinical practice. This is the first book dedicated to the principles and practice of SGRT, featuring: Chapters authored by an internationally represented list of physicists, radiation oncologists and therapists, edited by pioneers and experts in SGRT Covering the evolution of localization systems and their role in quality and safety, current SGRT systems, practical guides to commissioning and quality assurance, clinical applications by anatomic site, and emerging topics including skin mark-less setups. Several dedicated chapters on SGRT for intracranial radiosurgery and breast, covering technical aspects, risk assessment and outcomes. Jeremy Hoisak, PhD, DABR is an Assistant Professor in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Hoisak’s clinical expertise includes radiosurgery and respiratory motion management. Adam Paxton, PhD, DABR is an Assistant Professor in the Department of Radiation Oncology at the University of Utah. Dr. Paxton’s clinical expertise includes patient safety, motion management, radiosurgery, and proton therapy. Benjamin Waghorn, PhD, DABR is the Director of Clinical Physics at Vision RT. Dr. Waghorn’s research interests include intensity modulated radiation therapy, motion management, and surface image guidance systems. Todd Pawlicki, PhD, DABR, FAAPM, FASTRO, is Professor and Vice-Chair for Medical Physics in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Pawlicki has published extensively on quality and safety in radiation therapy. He has served on the Board of Directors for the American Society for Radiology Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM).
Handbook of Robotic and Image-Guided Surgery
Title | Handbook of Robotic and Image-Guided Surgery PDF eBook |
Author | Mohammad Hossein Abedin Nasab |
Publisher | Elsevier |
Pages | 753 |
Release | 2019-09-25 |
Genre | Science |
ISBN | 0128142464 |
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book. - A thorough and in-depth handbook on surgical robotics and image-guided surgery which includes both fundamentals and advances in the field - A comprehensive reference on robot-assisted laparoscopic, orthopedic, and head-and-neck surgeries - Chapters are contributed by worldwide experts from both engineering and surgical backgrounds
Intensity-Modulated Radiation Therapy
Title | Intensity-Modulated Radiation Therapy PDF eBook |
Author | S. Webb |
Publisher | CRC Press |
Pages | 441 |
Release | 2015-05-06 |
Genre | Medical |
ISBN | 1420034111 |
Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de
Accuracy Requirements and Uncertainties in Radiotherapy
Title | Accuracy Requirements and Uncertainties in Radiotherapy PDF eBook |
Author | International Atomic Energy Agency |
Publisher | |
Pages | 297 |
Release | 2017-04-12 |
Genre | Technology & Engineering |
ISBN | 9789201008152 |
Accuracy requirements in radiation oncology have been defined in multiple publications; however, these have been based on differing radiation technologies. In the meantime, the uncertainties in radiation dosimetry reference standards have been reduced and more detailed patient outcome data are available. No comprehensive literature on accuracy and uncertainties in radiotherapy has been published so far. The IAEA has therefore developed a new international consensus document on accuracy requirements and uncertainties in radiation therapy, to promote safer and more effective patient treatments. This publication addresses accuracy and uncertainty issues related to the vast majority of radiotherapy departments including both external beam radiotherapy and brachytherapy. It covers clinical, radiobiological, dosimetric, technical and physical aspects.
Adaptive Radiation Therapy
Title | Adaptive Radiation Therapy PDF eBook |
Author | X. Allen Li |
Publisher | CRC Press |
Pages | 404 |
Release | 2011-01-27 |
Genre | Medical |
ISBN | 1439816352 |
Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an
Carbon-Ion Radiotherapy
Title | Carbon-Ion Radiotherapy PDF eBook |
Author | Hirohiko Tsujii |
Publisher | Springer Science & Business Media |
Pages | 284 |
Release | 2013-12-25 |
Genre | Medical |
ISBN | 4431544577 |
This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.
Practical Medical Physics
Title | Practical Medical Physics PDF eBook |
Author | Debbie Peet |
Publisher | CRC Press |
Pages | 263 |
Release | 2021-08-24 |
Genre | Medical |
ISBN | 1351391720 |
Provides an accessible introduction to practical medical physics within a hospital environment Maps to the course content of the Scientist Training Programme in the NHS Acts as a complement to the academic books often recommended for medical physics courses