Synthesis and Reactivity of Thioether-supported Organoiron and Low-valent Iron Complexes and Cyanide-bridged Binuclear Complexes
Title | Synthesis and Reactivity of Thioether-supported Organoiron and Low-valent Iron Complexes and Cyanide-bridged Binuclear Complexes PDF eBook |
Author | Michael T. Mock |
Publisher | ProQuest |
Pages | |
Release | 2008 |
Genre | Iron compounds |
ISBN | 9780549388432 |
The use of FeCl 2 (THF) 1.5 lead to the synthesis of [PhTt tB u]FeCl that provided entry into new [PhTt tBu]FeX chemistry. [PhTt tBu]FeCl crystallizes as a five-coordinate chloride bridged dimer that is a high-spin ferrous complex with an S = 2 ground state. The metathetical reaction of [PhTt tBu]FeCl with the desired dialkylmagnesium reagent, R 2 Mg (R = Me, Et, Ph, Bn), in 1,4-dioxane/THF leads to the formation of high-spin, S = 2, electronically and coordinatively unsaturated four-coordinate organoiron(II) complexes of the type, [PhTt tBu]Fe(R) (R = Me, Et, Ph, Bn). Reaction of [PhTt tBu]Fe(R) (R = Me, Et, Ph) with CO yields the low-spin, S = 0, six-coordinate complexes [PhTt tBu]Fe(CO) 2 (R) (R = Me, Et, Ph). Carbonylation of [PhTt tBu]Fe(Bn) yields [PhTt tBu]Fe(CO) 2 (Bn) and the reduced monovalent species [PhTt tBu]Fe(CO) 2 . The reduction of [PhTt tBu]FeCl in the presence of a phosphine ligand, PMe 3 or PEt 3, yields the high-spin, S = 3/2, monovalent iron complexes, [PhTt tBu]Fe(PMe 3) or [PhTt tBu]Fe(PEt 3) in moderate yields. [PhTt tBu]Fe(PMe 3) reacts with CO producing the low-spin, S = 1/2, monovalent product [PhTt tBu]Fe(CO) 2 . X-ray crystallographic analysis confirms a five-coordinate, square pyramidal coordination geometry. [PhTt tBu]Fe(PMe 3) reacts with diphenylacetylene producing the high-spin, S = 3/2 product [PhTt tBu]Fe(PhC=CPh). X-ray crystallography confirms a five-coordinate, square pyramidal coordination geometry with PhC=CPh bound to the iron center in a symmetric, side-on eta 2 binding mode. [PhTt tBu]Fe(PMe 3) reacts with adamantyl azide producing the high-spin, S = 3/2 product, [kappa 2 -PhTt tBu]Fe(N 4 Ad 2). The dialkyltetraazadiene ligand exhibits nearly identical N-N bonds suggesting a delocalized ligand radical dialkyltetraazadiene resonance form. Efforts to model a catalytically inhibited form of COdH were performed by designing a simple Ni:Fe binuclear complex that provides the essential metal coordination spheres of the C-cluster active site. The scope of these studies was expanded to include a series of cyanide-bridged binuclear complexes, ('S 3 ')Ni-CN-M[Tp tBu] (M = Fe, Co, Ni, Zn). A similar coupling scheme was used to synthesize the copper(I) analogue, Et 4 N{('S 3 ')Ni-CN-Cu[Tp tBu]}. Two synthetic strategies were employed to investigate the formation of cyanide-bridged linkage isomers. The products of two different 13 CN labeled reactions intended to yield ('S 3 ')Ni-CN-Zn[Tp tBu] and ('S 3 ')Ni-NC-Zn[Tp tBu] were analyzed. Nearly identical infrared and 13 C NMR spectroscopic data provide additional evidence that ('S 3 ')Ni-CN-Zn[Tp tBu] is produced in both reactions.
Dissertation Abstracts International
Title | Dissertation Abstracts International PDF eBook |
Author | |
Publisher | |
Pages | 1006 |
Release | 2008 |
Genre | Dissertations, Academic |
ISBN |
The Chemistry of Alkenes
Title | The Chemistry of Alkenes PDF eBook |
Author | Saul Patai |
Publisher | |
Pages | 1342 |
Release | 1964 |
Genre | Alkenes |
ISBN |
Iron Catalysis
Title | Iron Catalysis PDF eBook |
Author | Bernd Plietker |
Publisher | Springer Science & Business Media |
Pages | 227 |
Release | 2011-01-05 |
Genre | Science |
ISBN | 3642146694 |
Juan I. Padrón and Víctor S. Martín: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe–H Complexes in Catalysis; Kristin Schröder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); René Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates.
Selenium and Tellurium Chemistry
Title | Selenium and Tellurium Chemistry PDF eBook |
Author | J. Derek Woollins |
Publisher | Springer Science & Business Media |
Pages | 326 |
Release | 2011-07-28 |
Genre | Science |
ISBN | 3642206999 |
Our knowledge of the chemistry of selenium and tellurium has seen significant progress in the last few decades. This monograph comprises contributions from leading scientists on the latest research into the synthesis, structure and bonding of novel selenium and tellurium compounds. It provides insight into mechanistic studies of these compounds and describes coordination chemistry involving selenium and tellurium containing ligands. Contributions also describe the theoretical and spectroscopic studies of selenium and tellurium compounds. Additionally, this monograph outlines the applications of selenium and tellurium in biological systems, materials science and as reagents in organic synthesis and shows how these applications have been a fundamental driving force behind the research into the inorganic and organic chemistry these fascinating elements.
The Chemistry of Pincer Compounds
Title | The Chemistry of Pincer Compounds PDF eBook |
Author | David Morales-Morales |
Publisher | Elsevier |
Pages | 467 |
Release | 2011-08-11 |
Genre | Science |
ISBN | 0080545157 |
Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials.* Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known
Chemistry of Iron
Title | Chemistry of Iron PDF eBook |
Author | J. Silver |
Publisher | Springer Science & Business Media |
Pages | 316 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401121400 |
This book is designed to be of use to the reader in two different ways. First, it is intended to provide a general introduction to all aspects of iron chemistry for readers from a variety of different scientific backgrounds. It has been written at a level suitable for use by graduates and advanced undergraduates in chemistry and biochemistry, and graduates in physics, geology, materials science, metallurgy and biology. It is not designed to be a dictionary of iron compounds but rather to provide each user with the necessary tools and background to pursue their ,individual interests in the wide areas that are influenced by the chemistry of iron. To achieve this goal each chapter has been written by a contemporary expert active in the subject so that the reader will benefit from their individual insight. Although it is generally assumed that the reader will have an understanding of bonding theories and general chemistry, the book is well referenced so that any deficiencies in the reader's background can be addressed. The book was also designed as a general reference book for initial pointers into a scientific literature that is growing steadily as the understanding and uses of this astonishingly versatile element continue to develop. To meet this aim the book attempts some coverage of all aspects of the chemistry of iron, not only outlining what understanding has been achieved to date but also identifying targets to be aimed at in the future.